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Abstract

The tooth geometry calculations of the involute gears invalve
the evaluations of involute function £ = tané — ¢ or ¢ = invg,
and inverse involute function ¢ = inv~?{¢). Ustally, the inverse
function is calculated by using an extensive tabulation of {¢,
inv¢) which is given in many textbooks and reference books.
1o this paper, asymptotic series solutions and the corresponding

i error expressions of the inverse involute function are
derived by singular perturbation methods. The computation of
the inverpe invalute function using these asymptotic series can
be casily performed by using a pocket calculator. M is shown
that the solution by two term asymptotic inverse involute series
¢ = inv (e} = (%)/* ~ 2/5, with maximum error lem than
1.0% of the angle ¢(< 45" ), is almost s accurate as that obtained
by linear interpolation from an extensive table of {$, invg); and
the solution by four term totic series ¢ = inv™* (), with
maximum error less than Oml&, which is much more accurate
than the interpolation method, is almost same aa the exact value.
Sample applications of these asymptotic seriea in the tooth ge-
cmetry calculations of the involute gesrs wre given.

L. Introduction

The involute curve is most widely used for gear tooth shape.
In Fig.1, the involute curve BC is generated with respect to the
base circle with radius n, with the property that length AP equals
the arc length AB. We can derive the parametric expression for
the involute function for BC as follows [5-8].

Figmre 1 Base circle and involute curve.

{123 nes (1)

I the variable angle ¢ is known, invé can be readily determined.
But sometimes the problem is how to find ¢ when ¢ = invé in
known. This question arises quite often in tooth geometry calcu-
lations in gearing. Obviously, no exact eolution for ¢ = inv™? (¢)
can be expressed explicitly in term of elementary functions of «,
One might solve for ¢ iteratively vsing computers, but this is not
an efficient way, Some mechanizn textbooks, such as Ref.[5-6],
give an extensive table of ($, invg}, from which inv™ (¢) can be
interpolated. But such a table has its disvantages: the values
can 5ol be manipulaied mathematically; interpalation is usually
required in arder to get expected result; and fnally, it is difficult
to estimate the errors.

Based on the above considerations, the explicit expressions
for ¢ in ternm of ¢ = invé are derived by singular perturbation

methods.
IL Foromlation

The involute pressure angle ¢ in usually Joes than x/4 when the
invuluucuneiauuduthehothanedlpurlun,thudom,
inv$ < inv(x/4) = tan(x/4) - x /4~ 0.215. For convenience, et
¢ = invé and 1 = ¢, then Eq.{1) becomes
tanz-z=¢, c€l 2
Since tanz— 1 = f(z) is an odd function of 2, we can consider
only the case when ¢ > 0, but the result will be valid for ¢ < 0.
Let 3y = tanx, 3, = £+ ¢; then the solution of Eq.(2) for

given ¢ is the intersection of the curves of y; and y; as shown in
Fig.2 . There are infinite solutions of z corresponding to & given

Figwre 2 Graphesof y, =tanzand p; =2 +¢.
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. value of ¢ in Eq.(2). We only consider the solutions which Lie
within 2 € (~#/2,x/2). But the bllowing method can be easily
extended 1o interval £ € (~00,00). When |2| < x/2, the Thylor
series expansion of tan £ s

1 2 17
m8=:+§£ +|—5l’ +m!’ (a)

€2 o T E 1B e,

+-ﬁ—§s’ oot TR ' L AT

where B, in Bernoulli's constant. Substituting Eq.(3) into Eq.(2),
we get

1 2 17 €2 - :
Sf +-ﬁa‘ +ml’ +-ﬁsl’ G =8 {4)

According to singular perturbation theorems [1-4], let
He)~ D Gfe), m =0, (6)

a=m}

where §.4;(¢) < &, (g), a3 £ — 0*. We then try to find the first
four terms of the asymptotic series of £ in Eq.{6). Writing Eq.(5) '
explicitly, i
ey~ 85 + 53 +ha +85 +00&), ()
where § are functions of £, and both § and & need to be deter-
mined, Substituting Eq.(6) into Eq.(4), we get
Tbn+hn +ha +an + ORI +2 s+

17 62
.il_sls‘q +.eo] +Epﬁl Feoif fecomvg,

U
+

HHan +597 +3(65 +6F (5a) +068)
+B3 2 +5n +HaF Ex)] + 068}
+ 2 {0 +62F +56,% + 521 6) +HER)]
+5(hn +65 +63) (Gx) + 05 ])} {8
{62 +&2) + 7z +862) (B3)
+0(8)) +0(574 )}
+ ol G +0616)} +06)~ ¢,

For convenience, we define the neglected term to be O(k). ex-
panding Eq.(8) again, we get

§ij

*35

HGAF +36.5F (o) +36:5)60F + GaF)
+3EnF + 2055 )260) + Haf|6G)
+3,5 Y (&%) + ofA)}

{62 + 565 ) 6%) + 106, 2 (52 +0(4)
+5(6,%) (B2)+ oK)

gl s 7065 P 62) + ()

+ 765 ) (Ex) + o)}

+%{(aar+o(u} +0{h)~ 2.

Comparing the order on the both sides of Eq.{9) by usin

the
dominant balance method, we obtain the following results rl-ilz
(i) ord(8} J=ord(e):

thes & =e, o § =g,

Setting the coefficient of & equal to the coeflicient of ¢ in Eq.{0),

we get
1
34!
or ‘i=w’n k=012
According to Fig.2, we only consider the real root, hence
5 =3

(i) ord(7,) = ord(5}) = ced(e?):

then 58 =8, o & =8 =c.
Because the coefficient of ¢/ in Eq.(9) is sero, we get
30ga)+2d =0,
2 2
or q=-ﬁ€=-i.’
(iii) ord(5; &) = ord(}4 ) = ard(6!6,) = ord(E] ) = ord(e?/?):
then && =6, o & =8 =0,
Setting coefficient of £€7/* in Eq.(9) to sero, we get

30852 +32n) + 2 (sdm) + e =0,

and hence 2 "
s ==(5'g+388 +354)
9
= |
iv) ord = ord (5, = ord = $5)= =
olr:l)(é?&(‘)i) ud(i,’()lgﬁzi(g’): (68 ) = ord(5}8) = ord(575)
then &5 =8, o & =8 =,

Following the same procedure ss shown above, we can get
38 +8ans +330)+ 2 (1025 + 5edn)
+ 504} + g =0

Subetituting 5, = /3,5, = —2/6,8 = 9+ P/3/176 into sbove
equation, finally, we obtain

‘I=—l_2n3,n.r
Eq.(8) now gives the following esymptotic series for £ = inv™' {r) ,
~pnpnn 2. 8 opan_ 2 apnon
se) ~ 3P0 — 2o 4 T BRA - 3R 419

o zfg)~ i a3, (1)

Where .l=3l’:lq=-§l~=f,ﬁ,,aau=_l%’"’.“
For the arymptotic series (11),

»
He)= Y e d™ U0 & g TN, gy o 0t YN (12)

or, alternatively




Table 1

Comparision of £{e) = inv™! (¢) and estimated
errors E{e} with their exact values

E E
[ 4 Tyt ‘4(‘) B (‘)
’ Eipan E [e) B Ele)
177 )0°° 1" 1* ] L] r 0 1]
2.22¢ 107 & F 0 1} £ 59 59.08" o.or 0.0
1.79+ 1073 ir 1 0 0 59 59.47" 0.58" 0.58"
6.14» 107 17 15 0 0.0 14 59 55.47 4.5%" 4.55"
147+ 1072 oA bty 0 019" | 1F¢5042.27 19.7%" 19.97
3.00¢ 1073 25° 25*0.01" 0.01" 0.95" 24585114 vzee 1'8.87
536« 1077 3 3ro0.06" 0.08" L 25T 1480 24519 Z48.97
893 1072 5 35 0.2 0.25" 121y 58841 g21.59" @33.08"
1.419 107! @ 4r 0.9 0.927 35.19" 39 48 33.50" 132640 14 2.51"
2.15¢ 10°¢ 45 45 2.90" 2.90° I 49351032 26 40.68" 2817.3%
in Table 1, we compare the asymptotic solutions 2 (¢), 7, {¢) and
E the estimated errors K, (¢), K (e) with their exact valuea, The
exact solutions are obtained by evaluating tan z—~ £ = ¢ directly.
l From the Table 1, we can see that E; (r) is a good approximation
of the exact error; e, ay, e/ +31/3 g g better error expression
= than aye!®¥-/2 for zfe) = TF | o, £3*-11/3; 3 () is less than
3 | the exact Ty, and z,{) is larger than £, ; i.e.
.E. G 2(E) <€ Laare < ().
240) In Table 1, we define
) P | P |
e = |exact Iy {£) - totic imv ™~ [c)].
g _/K_ Bt o =| (6) -~ aeymp @
o a5 0 #ideg.) In Fig.3, both exact errors and estimated errors are shown. We

!

i
Figured Comparision of the estimated errors and their
exact errors of asympiotic solutions s, (¢) and =, (c).

N
He)= ) e W30 gy, NS, ae £ G VN, (19)

anm]

Therefore, we can define the asymptotic sclution zy (¢) and the
i error E.st) either by aye?=U2 (loose), or
Gy 41 €3NIV (precise) as follows.

nle)~ $100 - e
{ E{e)~ fhp¥rer

n(e) ~ 36 - fo 4 (R PO - R 2
{ Efe)~ yhs ¥/

(14a)

(15a)

ar

{s,(e)- Laa225el0 - Ode
By (e}~ 2.80008*

{ 2y (€) ~ 14422543 — 0.4r + 0.108976c%/ 2 - 0,015432&7(135‘)

(14)

Ey(c) ~ 0.0164828 "/

can see that the asymptotic solution = (e) is s good approx-
mation when |¢| < 0.05, corresponding to ¢ = 30°, and 5 {¢)
matches the exact solution well. By using expressions for esti-
mated errors B (¢} and K {£), obe can predict the errors a priori,
i, before calculsting the asymptotic solutions.

Note that the error of asymptotic solutions are less than
1.0% and 0.0018% for % (¢) and £ (¢), respectively, when ¢ <
x/4, and the maximum error occurs at ¢ = x/4; these percent
errors are the maximum error in ¢ expressed as & percentage of
themg_edd.'ﬂ:inamumi-uﬁsfum for tooth geatnetry

. Applications

Examples of application of the asymptotic inverse involute
function in gearing now follow. The first example is for standard
myolute gears; the second and third are sbout gearing system
w bon-standard operating presure angle and operating dis-

CE.

Examplel A tooth is 1.57 inch thick at the pitch radius
of 157inch and » presure angle of 20°. At what radius does the
tooth become pointed 7 ( From Ref|S] on p.281 )

Let the presure angle and radius be ¢, and r,, respectively,
at the point where the tooth becomes pointed. At pitch radius,
t=157in, r =16 in, ¢ = 20°, and according to Ref]5-8]:

7 L= +ivé- inve,) =0,




t

7+ invg = 0.063966883.

invg, =
Hence
¢, = inv™’ (0.083066883).
Note that ¢ = 0.063966883 < 1; using Eq.(14}, we get the presure
angle
go=3eh-2c  (radiams)
= 31.58221025° .
The radius is
_ rcoag
- cosd,
with 0.0857% error. Tbe exact values are ¢, = 3184334714,
and r, = 17.68069231 in, which were obtained by computer using
Muller's method to solve the nonlinear equation tang, — ¢, =
0.003068883. The values cbtained by four term ssymptotic series
Eq.(15) are ¢, = 31.64337431°, and r, = 17.66069747 in {with
2.92+ 1074 % error).

2  ‘Twospur gears of 12 and 15 teeth, respectively,
are {o E cut by a 20° full-depth 6-pitch hob. Determine the.cen-
ter distance at which to generate the gears to avoid undercutting.
{ From Ref.[6] on p.183 )

= 17.6490071 in.

¥

a =Fl‘(k— %dn’é) = 0.04968 n,

o Moo .
o =5 (k- 5 sin’ $) = 0.02045 .

2Fu(ey + o5 )tand

= 002824
N4+ N

invé' = invg +

Using Eq.(14), we get
¢ = inv"* (0.02624)

= (3= 0.02624)4 - %- 002624  {rad.)
= 23.95424862" .
_rncos¢ 1»cos?F
T s cosd
_mecoad _ 1.25¢ con 2(F

4 cond  coad
C' =4, ++, = 2.513576889 in.

h

with 0.0108834% emor in C’. The exact values cbtained by
using computer are ¢' = 23.068254% , and €’ = 2.3]13828251
in. The values obtained by Eq.(15) are ¢/ = 23.988257%", and
C' = 2.313828294 in (with 1.Bs 107°% error). The values in
Rel[6] are ¢/ = 23.97, and C' = 2.5144 in (with 0.0471% er-
rer),

%lea Two spur gears of 32 and 48 teeth cut by an
8-pitch, pinion cutier mesh together without backlash at the
standard center distance of § in. To change the speed ratio, it is
necessary to replace the 32-tooth pinion with one of 31 teeth, The
tooth thickness on the cutting pitch circle of 48-tooth gear and
the 6-in. center distance are to remain unchanged. Determine
the value of ¢, that will give teeth of the proper thickness to mesh
with the 48-tooth gear. The pitch diameter of the pinjon cutter
D, is 3.000 in., and the sumber of teeth in the cutter N, is 24. (
From Ref.[6] on p.196 ) -

"_-ﬁ’: =3-—8=1.93751n
_ N8 .
ﬁ-zP‘—z.s—S.Mm

31438

M+N
2P; - 2+ 8
€' = 5.000 in.
, _ Ceosd, _ 4.938coa 20r
' 5000

=

Because ; = 0, the generating presure angle of the gear 2 is
dn =zﬂ’,mdwcmaolvefm-¢,‘ as follows:

(N, + N.)inv,, + (N, +N. Jinvg,, = 2N,invé, + (N, + N, Jinve, .
(31 + 24)invé,, + (48 + U)invé,,
= 2= Uinv2C + (31 + 48)inv21 67,
‘Therefore,
invg, =0.021773.
Using Eq.(14), we get
¢y, = inv7! (0.021773)
= (8 0.02773)3 - -:. 0021773 {red)
= 22.57568606

M+ -
U= Ecme,, O

where C,; is the standard center distance between gear 1 and
the cutter.

5 = peosd, =’-;u-nr = 0.3690 in.
_N+N 1+u

c“ ZP‘ -W = 3.4375 ine.
o =Lt 24030 o

'~ 2x cas 22 575686007
= {,080597545 in.

with 0.4290188% error. The exact values cbtained by using the
compuler are ¢, = 22.58500534', and ¢, = 0.060858547 in.
The values obtamed by Eq.(15) are ¢, = 22.58508675°, and
¢ = 0.080858583 in (with 591+ 16°*% error). The values in
R!‘.I?] are ¢,, = 2250, and ¢ = 0.06096 in (with 0.188T%
errar).

In the above examples, in crder to get the values of ¢ =
inv™'{¢), the interpolstion of ¢ from an extensive table of
(¢, inve} in imperative in Ref|5-8).

Conclnzions

Comptrisons of the above results with those in Ref.[6] show
that the accuracy using the two term asymptotic inverse involute
seriea Eq.(14) is almost the same as the accuracy using interpola-
tion of ¢ from a table. The exact values are alinost same as those
obtained by the four term asymptotic series Eq.(15) and the lat-
ter are much more accurate than the interpolation from a table.
Therefore, the use of the asympiotic inverse involute series de-
tived in this paper, instead of an extensive table of (g, invé), are
suggested in tooth geometry calculations of the involute gears.

Since the asymptotic series renders the implicit inverse invo-
lute function explicit, it could be used to simplify the determi-
nation of pinico-cutter offeets required to produce nonstandard
spur gears with teeth of equal strength [6,11]. It is expected that
this asymptotic series will find ita applications not cnly in the
gear tooth geometry calculations, but also in some other fields of
engineering where the inverse involute function is involved.

For more information sbout inverse involute function, ecpn-
cmization of inverse involute asymptotic series Eq.(10) by Chéby-
shev polynomials, and derivation details of inverse involute
asymptotic series when [¢] ~ 1 and |¢] 2> 1, one can see Ref [1].
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