Mob:’leC

Mobile-C
— A Multi-Agent Platform for Mobile C/C++ Agents

User’s Guide

Version 2.1.4
Harry H. Cheng

Mobile-C User’s Guide prepared by:

David Ko
Harry H. Cheng

June 17, 2011

Major Contributors (in alphabetical order)

Mobile-C is developed with idea, vision, and design by Professor Harry H. Cheng

People who helped to make Mobile-C the real thing (if you noticed that some
names are missing, please mail to mobilec@iel.ucdavis.edu)
Name Company Remarks
(during contribution)
Bertocco, Cristian Univ. of California, Davis Design and implementation
cbertocco@dei.unipd.it of encryption for security
in Mobile-C

Chen, Bo Univ. of California, Davis Design and implementation
bochen@mtu.edu of Mobile-C

Chou, Yu-Cheng Univ. of California, Davis Design and implementation
cycchou@ucdavis.edu of the Mobile-C library
Honda, Jason Sandia National Laboratories

jhonda@sandia.gov

Ko, David Univ. of California, Davis Design and implementation

dko@ucdavis.edu of the Mobile-C library

Linz, David Univ. of California, Davis Design and implementation

ddlinz@gmail.com of Mobile-C

Malik, Najmus S., Univ. of California, Davis Design and implementation

najam.malik@gmail.com of the Mobile-C Security
Module.

Nestinger, Stephen S., Univ. of California, Davis Webmaster of

ssnestinger@ucdavis.edu http://www.mobilec.org
Stark, Douglas P. Sandia National Laboratories Design and implementation
dpstark@sandia.gov of .NET interface

Copyright

/* [

*

* % X

b . R T . S N S S S . S S S S

*

1%/

Copyright (c) 2007-2008 Integration Engineering Laboratory
University of California, Davis

Permission to use, copy, and distribute this software and its
documentation for any purpose with or without fee is hereby granted,
provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear
in supporting documentation.

Permission to modify the software is granted, but not the right to
distribute the complete modified source code. Modifications are to
be distributed as patches to the released version. Permission to
distribute binaries produced by compiling modified sources is granted,
provided you
1. distribute the corresponding source modifications from the
released version in the form of a patch file along with the binaries,
2. add special version identification to distinguish your version
in addition to the base release version number,
3. provide your name and address as the primary contact for the
support of your modified version, and
4. retain our contact information in regard to use of the base
software.
Permission to distribute the released version of the source code along
with corresponding source modifications in the form of a patch file is
granted with same provisions 2 through 4 for binary distributions.

This software is provided "as is" without express or implied warranty
to the extent permitted by applicable law.

Abstract

Mobile-C is an IEEE FIPA (Foundation for Intelligent Physical Agents) standard compliant multi-agent
platform for supporting C/C++ mobile agents in networked intelligent mechatronic and embedded systems.
Although it is a general-purpose multi-agent platform, Mobile-C is specifically designed for real-time and
resource constrained applications with interface to hardware. Mobile agents are software components that
are able to move between different execution environments. Mobile agents in a multi-agent system com-
municate and work collaboratively with other agents to achieve a global goal. It allows a mechatronic or
embedded system to adapt to a dynamically changing environment.

i :& Mobile Agent

~
1, (N

Mobile Agent g e . :s]' Mobile Agent

‘ b

Contents

(L Introduction|

2 Mobile-C Library Installation|

2.1 Requirements|

[2.2.1 Install the Mobile-C library|,

[2.3.1 Building the Mobile-C Library|

2.4.1 Build the Mobile-C library| oo

[2.5.1 Build the Mobile-C library| o o

[2.6 Installing the Mobile-C Ch Package|

[2.7 Creating your own compilation environment|

2.7.1 UNIX and Mac systems|

Getting Started|

3.1 Compilation on Unix|

3.2 Compilationon Windows| L

[3.3 Overview of Sample Application Programs|

3.4 Mobile-C Bluetooth Agencies (Experimental)|

[3.5 Execution of Sample Applications| o

[3.6 The Mobile-C Library|

[3.6.1 Architecture of the Mobile-C Library |,

[3.6.2 Implementation of the Mobile-C Library|

Composing Agents|

5

4.1 Mobile-C Command Prompt compose_send Command|.

@4.1.1 Example Execution Using the compose_send Command|.

4.2 Mobile-C MC_ComposeAgent Functions|

4.3 Agent Workgroups| .

A : '
5.1 Agent Return Datal .
5.2 Agent Saved Variables|

15
15
15
16
16

|6 Mobile-C Agent Migration Message Format|

|6.1 General Message Format|.

6.2 Multiple Tasks with a Single Code Block|, ...
|6.3 Multiple Tasks with Multiple Code Blocks|
|6.4 Multiple Mobile Agent performs Task on Multiple Hosts|

6.5 Agent Return Messages|.

[6.6 Agent Saved Variables|

|6.7 Stationary/Persistent Mobile Agents| L o oo

[6.7.1 An Agent with an Infinite Task|.

[6.7.2 The “persistent” AgentFlagl,

obile- ompliant essages
[7/.1 Constructing and Sending an ACL. Message|
7.2 Receiving an ACLL Message|.

|8 Mobile-C Binary Stationary Agents |

|9 Interface between Binary and Mobile Agent Spaces |

9.1 Using an Agent Initialization Callback Function to Intergrate Binary and Script Space Code|

9.2 Invoke a Mobile Agent Space Function from Binary Space|

{10 Extend Mobile-C Functionality to Mobile Agent Space]

[10.1 Terminate Mobile Agent Execution from Mobile Agent Space|]

|10.2 Invoke a Registered Service from Mobile Agent Space|

|11 Synchronization Support in the Mobile-C library|

[11.1 Synchronization in Mobile Agent Space|

|11.2 Synchronization Between Binary and Agent Spaces|

[11.3 Mobile-C Execution with Multiple Agencies|.

obile-C Security Module

[12.1 Security Module Architecture and Overview|.

|12.2 Enabling the Security Modulef

(12.2.1 Enabling the Security Module mUnix|

(12.2.2 Enabling the Security Module in Windows|

|12.3 Preparation to Run Security Enabled Agency|

[12.3.1 Generating Key Files|

[13 Communication With Other FIPA Compliant Agent Systems|

(13.0.1 Example: Receiving a message fromaJADEagend

(13.0.2 Example: Sending a message from Mobile-Cto JADE|

|A° Mobile-C API in the C/C++ Binary Space |

[MC_AcIGetProtocol()| .

[MC_AcTAddReceiver()
[MC_AcIAddReplyTo()|

ii

22
22
24
24
24
24
34
34
34
35

38
38
38

40

42

43

47
47
48

56
56
59
61

67
67
67
67
68
68
68
68
69
69

73
73
76

[MC_ACIGETContentl)] . . « « v v o oo e e e e e e e e e e e 89

[MC_AcIGetConversationID()] o o v v o e 91
[MC_AcIGetPerformative()] v v v o o e e e e e e e e e 92
[MC_ACIGEIPIOtOCOI()| .« « v v o o e e e e e e e e e e e e 95
[MC_ACIGEtSEnder()]. o v v o e o e e e e e e e e e e e 96
IMC_ACINew()|. o o e e e e e e e 98
MC ACIPOST) . . .« « o o oo oo e e e 100
MCACIREPIY()| .+« v v o e o e e e e e e e e e 101
[MC_ACIREIEVE()] . . « « v o o o e e e e e e e e e e e e 102
[MC_ACISetContent()] . . - - « o v o oo e e e e e e e e 104
[MC_AcISetConversationID()] v v v v e e e e e e 106
[MC_ACISetPerformative()]. o v v v o o e e e e e e e e 107
[MC_ACISEtProtocol()] . . . « v o o o e e e e e e e e e 110
[MC_ACISetSender()] o v o o e e e e e e e e e e e 111
[MC_ACIWAIREIIEVE()] . « « o« o o o o o e e e e e e e e e e e 113
MC_AgentAddTask()] e 115
MC_AgentAddTaskFromFile()| 117
MC_AgentAttachFile()] 119
MC AgentListFIles()] o o o o 121
[MC_AgentProcessingBegin()] v v i i e 122
MC_ AgentRetrieveFile()] 124
MC_AgentReturnArrayDim()| 125
[MC_AgentReturnArrayExtent()]. o 127
MC_AgentReturnArrayNum()| 128
MC_AgentReturnDataGetSymbolAddr()] 129
[MC_AgentReturnDataSize()] v i e 130
MC_AgentReturnDataType()| o o o o i e 131
MC_AgentReturnlsAtray()| o i 132
MC_AddAgent()]. o o e e 133
MC_AddAgentInitCallback()] 135
[MC_AddStationaryAgent()] v o v v e e e e e e 137
MC_B O « @ o o e e 139
[MCBarrierDelete()] . . . « . o o o o e e e e e e e e 140
MCBarrierInit()] o o o e e e e e e 141
MC_CallAgentFunc()] o o i i e e e 142
MC_CallAgentFuncV()| o o e e 144
[MC_CallAgentFuncVar() o o o e e e e 146
[MC_ChInitializeOptions()|. o v it i e 148
MC_ComposeAgent()] v v i i 150
[MC_ComposeAgentSO)| o o 152
[MC_ComposeAgentWithWorkgroup()] i 154
[MC_ComposeAgentFromFile()] o v it 156
[MC_ComposeAgentFromFileS()| o i i 158
[MC_ComposeAgentFromFileWithWorkgroup()l v v i v i i e 160
[MC_CondBroadcast)] v v v o e e e e e e e e e e 162
[MC_CondReSet))] . . - « v v o o e e e e e e e e e 163
MC_CondSignal()] o v v i e 164

CondWait()f e e 165

ii

[MC_CopyAgent()] o v i e i e e e e e e 166

MC DeleteAgent()] o o o v i e 168
[MC DeregisterService()|. o o o v o e e e 169
MC_End()| e e 171
MC FindAgentByID()| o i 173
MC FindAgentByName()|. 174
MC_GetAgentArrivalTIme()| v o v v e e e e e e e e e 176
[MC_GetAgentExecEngine()] i i 177
MC GetAgentID()| o o o e 179
MC_GetAgentName()| o v 182
MC_GetAgentNumTasks()] 183
[MC_GetAgentReturnData()| o o i 184
MC_GetAgentStatus()] v v o e e e e e 186
MC_GetAgentType()] o v v v e e e e 188
MC_GetAgentXMLSIIng()] . . . - o o v v v v e e e e e e e 189
MC_GetAgents()| o v i e 191
IMC GEtAITAZENES()| . . .« « « o o o e oo e e e e 193
MC HaltAgency ()l v v o v e e e e e e e e e 194
MC_Initialize()] o e e e 195
[MC TnitializeAgencyOptions()] v o v v e e e e 199
MC LoadAgentFromFile()| i 201
MC MainLoop()| o o 202
MC MigrateAgent()]. o o o i o 203
MCMUtexLock()] o o o e e e e e e e e e 204
MC MutexUnlock()] o o o e e e e e e e 205
[MC PrintAgentCode()] o v v v e 206
MC_QueueXXLOCK()| . .« « o o o o e e e e e e e e e e e e 207
[MC RegiSterService()] . . . v v v v v o e e e e e e e e 209
MCResetSignal()] o v o o e e e 211
MC ResumeAgency()]. o v vt e e e e 213
[MCRetrieveAgent()] v o vt e e e e 214
[MCRetrieveAgentCode()]. v o v i 215
[MC_SearchForService()]. v v v o e e e e e e e e e e 217
[MC_SemaphorePost()] o 219
[MC_SemaphoreWait()]. o e 220
MC_SendAgent()] o v v i e 221
MCSendAgentFile()] o i e 222
[MC_SendAgentMigrationMessage()] e 224
[MC_SendAgentMigrationMessageFile)] v v v vt 225
[MC_SendSteerCommand()] e 227
[MC SetAgentStatus()] o o o v v e e 229
[MC_SetDefaultAgentStatus()] v . v v v o e e e e e e e 231

SetThreadOffQ)] o o 232
[MC_SetThreadOn()| o o o e e e 233
IMC_Steer()] o o e e e e e e e e e e 234
[MC_SteerControl()] o o o e e e e e e 236
MC_SyncDelete()] o v v i e 238
MC_SYNCIRI - -« « « o o et e e e e e e 239

v

[MC_TerminateAgent()] o v vt et e e e 240

MC_WaitAgent()] o . o o e e 241
MC_WaitRetrieveAgent()] o o v v e e e e e 242
MC_WaitSignal()] e 244
Mobile-C API in the C/C++ Script Space | 246
Imc_AclAddReceiver()|. e e e e e e e e e 250
Imc_AclAddReceiver()|. 252
Imc_AclAddReplyTo()| e e 254
mc_AcINew()] o L e 256
mc_AclPost()] 258
mc_AclReply(Q)] L 259
Imc_AclRetrieve()| e 260
mc_A dO| . - o o 262
Imc_AclSetContent()| e 264
Imc_AclSetPerformative()| e 266
Imc_AclSetSender()] L 269
Imc_AcIWaitRetrieve()| L e e 271
[mc_AddAgent()] e 273
Imc_AgentAttachFile()|. e 274
Imc_AgentListFiles()|. 276
Imc_AgentRetrieveFile()| 277
[mc_AgentVariableRetrieve()] 278
Imc_AgentVariableSave()] 280
mc_B O - - o 282
Imc_BarrierDelete()l e 283
Imc_BarrierInit()] e e 284
Imc_CallAgentFunc()] e 285
[mc_ComposeAgent() oL e e e e e e 288
Imc_ComposeAgentS()| e e e e 290
[mc_ComposeAgentFromFile()| 292
[mc_ComposeAgentFromFileS()f. 294
Imc_CondBroadcast()| e e 296
Imc_CondReset()] e 297
Imc_CondSignal()] 298
mc_CondWait()] e 299
Imc_DeleteAgent()] e e e 300
Imc_DeregisterService()| e e e e e e e e e e 301
mc_ EndQ)| 303
[mc_FindAgentByID()| oL e 304
Imc_FindAgentByName()] e 306
Imc_GetAgentID()| 308
Imc_GetAgentName()| 311
Imc_GetAgentNumTasks()|. e 312
mc_GetAgentStatus() L e e e 313
Imc_GetAgentXMLString()] e 314
Imc_HaltAgency()] e e e 315
Imc_MigrateAgent()l e e e e e 316

Imc_MutexLock()] e 318

Imc_MutexUnlock()| e 319
Imc_PrintAgentCode()| e e e 320
Imc_RegisterService() L e e 321
Imc_ResumeAgency() e e e e e e e e e e e 323
Imc_RetrieveAgent() L. e 324
mc_RetrieveAgentCode()] oL 325
Imc_SearchForService()| e 326
Imc_SemaphorePost()] e e 328
[mc_SemaphoreWait()] 329
Imc_SendAgentMigrationMessage()|. i e e e e e e e e e 330
[mc_SendAgentMigrationMessageFile()|. o o oo 331
Imc_SendSteerCommand()|. e 332
Imc_SetAgentStatus()] L. e e e e 334
Imc_SetDefaultAgentStatus()| e 335
Imc_SyncDelete()] e e 336
... 337
mc_TerminateAgent()] e e e 339
|C Mobile-C Agent Porting Guide from v1.9.x to v1.10.x| 341
|C.1 Overview of major changes| 341
[C.1.1 Comparison of Old Format and New Format| 341

[C2 NewAgent XML DTD]. e 343
Index] 343

vi

Chapter 1

Introduction

Parallel and distributed computing [[1] [2]] are widely used in scientific and engineering fields, especially
for time-critical or time-consuming tasks. Parallel computing is typically carried out in dedicated multipro-
cessors with a central clock and shared memory. On the other hand, distributed computing is decentralized
parallel computing, using two or more computers communicating over a network to accomplish a common
objective or task. It is similar to computer clustering with the main difference being a wide geographic dis-
persion of the resources. In addition to the main difference, the types of hardware, programming languages,
operating systems and other resources may vary drastically as well in distributed computing.

Although the processing speed of networked computers is typically not as fast as that of a dedicated
parallel computer, networked computers are less expensive and more broadly available. Due to the rapid
improvement in network hardware and software that makes distributed computing faster, more broadly
available, and easier-to-implement than before, there are more and more research investigations nowadays
targeting or exploiting this low-end, decentralized parallel computing. Meanwhile, as the scale of distributed
applications rapidly expands, there is an increasing demand for the code mobility.

Agent technology can significantly enhance the design and analysis of problem domains under the fol-
lowing three conditions [3]: (1) the problem domain is geographically distributed; (2) the subsystems exist
in a dynamic environment; (3) the subsystems need to interact with each other more flexibly. Mobile agents
are software components that can travel between different execution environments [4]. Mobile agents can
be created dynamically during runtime and dispatched to source systems to perform tasks with the most
updated code. Therefore, the mobility of mobile agents provides distributed applications with significant
flexibility and adaptability which are both essential to satisfy the dynamically changing requirements and
conditions in a distributed environment.

Most of the mobile agent systems were developed to support only Java mobile agents. Furthermore,
many of them are standalone platforms. In other words, they were not designed to be embedded in a user
application to support code mobility. Mobile-C [J5] [6] [7] [8] was originally developed as a standalone,
IEEE Foundation for Intelligent Physical Agents (FIPA) compliant mobile agent platform with a primary
intention to fit applications where low-level hardware gets involved, such as networked mechatronic and
embedded systems. Since most of these systems are written in C/C++, Mobile-C uses C/C++ as the mobile
agent language for easy interfacing with control programs and underlying hardware. In addition, Mobile-C
uses an embeddable C/C++ interpreter — Ch, originally developed by Cheng [9] [10] [11]], to support the
execution of C/C++ mobile agent code.

In order to provide distributed applications with code mobility, this user’s guide presents a mobile agent
library, the Mobile-C library. The Mobile-C library is supported in various operating systems including
Windows, Unix, and real-time OS. It has a small footprint to satisfy the small memory requirement for a
variety of mechatronic and embedded systems. This mobile agent library allows Mobile-C to be embedded

in a program to support C/C++ mobile agents. The API functions in this library facilitate the development
of a multi-agent system that can easily interface with a variety of hardware devices.

Chapter 2

Mobile-C Library Installation

This chapter describes the prerequisites to install the Mobile-C library and the installation steps for both
Unix and Windows operating systems.

2.1 Requirements

This user’s guide assumes all necessary software packages are installed correctly and function. The software
packages required to successfully install the Mobile-C library include:

(1) Ch version 6.3.0 or greater: It can be obtained from http://www.softintegration.com

(2) Embedded Ch version 6.3.0 or greater: It can be obtained from http://www.softintegration.com

2.2 Installation on Unix

2.2.1 Install the Mobile-C library

The following commands will install the Mobile-C library in the system directory for 32-bit Unix systems.
The system directory for Unix systems is usually ‘/usr/local/lib’ or ‘/ust/lib’ depending on your system.

cd <MCPACKAGE>/src
./configure

make

make install

The following commands will install the Mobile-C library in the system directory for 64-bit Unix sys-
tems. The only difference between the above and below commands is that ‘fPIC’ is added into CFLAGS for
compilation.

cd <MCPACKAGE>/src
./configure CFLAGS=-fPIC
make

make install

By default, the Mobile-C library created contains both shared and static versions, which are ‘libmc.s0.0.0.0’
and ‘libmc.a’, respectively. The header file, libmc.h, used in the C/C++ binary space will be placed in the
system directory, which is usually ‘usr/local/include’ or ‘/usr/include’ depending on your system.

Note that these commands will automatically build mxml-2.2.2 and xyssl-0.7, both of which are pack-
aged with Mobile-C, but will not install these libraries. The Mobile-C libraries only need these libraries to
compile, but does not need them installed in order to run.

Also note that the above commands will automatically compile all the included demos automatically
after compiling the Mobile-C library. The demos will run even if the *make install’ step is omitted.

The ‘—prefix’ option can be used to specify the home directory to install the Mobile-C files, as shown in
the following commands.

cd <MCPACKAGE>/src
./configure --prefix=<MCHOME>
make

make install

<MCPACKAGE> is the directory created by unpacking the Mobile-C compressed tar file. <MCHOME> is the
installation directory for the Mobile-C library and header file.

The library files ‘libmc.s0.0.0.0’ and ‘libmc.a’ will be installed in <MCHOME>/11ib, and the header file
‘libmc.h’ will be placed in <MCHOME>/include.

2.3 Installation on Windows

2.3.1 Building the Mobile-C Library
The following steps are suggested to build the Mobile-C library.

1. Ensure that your _.chrc file in your home directory is up to date. The _chrc file may be opened
from the ChIDE text editor by opening ChIDE, selecting ”Options” from the menu, and selecting the
”Open Local Ch Startup File” menu item. The section in your _chrc file which contains settings
about your Visual C++ installation must be correct.

2. Unpack the Mobile-C source code. Ensure that you have write permissions for the directory you are
unpacking Mobile-C into, or you may encounter compile-time errors. As mentioned in the previous
section, we will refer to the unpacked directory as <MCPACKAGE>.

3. Open a Ch terminal.

4. Navigate to the <MCPACKAGE> directory in your Ch terminal. For example, if you unpacked Mobile-
C to the C:\Mobile-C directory, type cd C:\Mobile-C in your Ch terminal.

5. Type the command nmake —f makefile.win32 to build the Mobile-C library, as well as all of
the demos in the <MCPACKAGE>/demos/ directory.

2.4 Installation on KoreBot

2.4.1 Build the Mobile-C library

A bash script, build_korebot, is used to build the Mobile-C library and an executable sample program,
mc_sample_app, for KoreBot board.

Running the script will create a directory called korebot_mc that contains bin, include and lib directories.
bin directory contains the executable sample program. include directory contains the header file libmc.h. lib
directory contains the Mobile-C related static and shared libraries.

4

Two paths, KOREBOT_CHHOME and KOREBOT_TOOLCHAINHOME, in the bash script might need
to be changed to match the correct paths set up in a user’s system. KOREBOT_CHHOME is the directory
containing Ch files built for KoreBot board. KOREBOT_TOOLCHAINHOME is the directory containing
cross compiler related files for KoreBot board.

Use the following commands to run the bash script.

cd <MCPACKAGE>
./build_korebot

2.5 Installation on Gumstix

2.5.1 Build the Mobile-C library

A bash script, build_gumstix, is used to build the Mobile-C library and an executable sample program,
mc_sample_app, for Gumstix computer.

Running the script will create a directory called gumstix_mc that contains bin, include and lib directories.
bin directory contains the executable sample program. include directory contains the header file libmc.h. lib
directory contains the Mobile-C related static and shared libraries.

Two paths, GUMSTIX_CHHOME and GUMSTIX_TOOLCHAINHOME, in the bash script might need to
be changed to match the correct paths set up in a user’s system. GUMSTIX_CHHOME is the directory con-
taining Ch files built for Gumstix computer. By default, it is set to the value /usr/local/gumstix_ch/ch/.
GUMSTIX_TOOLCHAINHOME is the directory containing cross compiler related files for Gumstix com-
puter. By default, it is set to the value /usr/local/gumstix-buildroot.

Use the following commands to run the bash script.

cd <MCPACKAGE>
./build_gumstix

2.6 Installing the Mobile-C Ch Package

The Mobile-C Ch Package will be required if agents need to use any of the Mobile-C FIPA ACL message
functions, such as mc_AclSend () ormc_AclRetrieve (). To install the Mobile-C Ch package, please
follow these steps:

1. From the Mobile-C root directory, run the command:
ch ./pkgcreate.ch
This will create a directory called “chmobilec”.

2. From within a Ch shell, run the command:
sudo pkginstall.ch chmobilec
If you are using Microsoft Windows, you may omit the ”sudo” part of the command which is required
on unix-like systems to ensure proper installation permassions.

2.7 Creating your own compilation environment

If a custom build environment is required, there are several directories which must be added to the search
paths for header files and libraries. There are also a variety of system libraries which Mobile-C must be
linked with in order to compile properly.

2.7.1 UNIX and Mac systems

In order to compile properly, the extra include directory <CHHOME>/extern/include must be added
to the default include search directories. The directory <CHHOME>/extern/1ib must also be added to
the list of searched library directories. Furthermore, the following libraries must be linked with Mobile-C
during the link step:

libmxml (Provided with Mobile-C in the directory <MCHOME>/src/mxml/)
libmc_list (Provided with Mobile-C in the directory <MCCHOME>/src/mc_list)
libmc_sync (Provided with Mobile-C in the directory <MCCHOME>/src/mc_sync)
libdl

libpthread

libm

liberypt

libembedch (Provided with Embedded-Ch)

2.7.2 Windows

For windows, the include directory <CHHOME>/extern/include must be added to the include paths
and the directory <CHHOME>/extern/1ib must be added to the library search paths. Furthermore, the
library wsock 32 . 1ib must be linked with Mobile-C in order to compile properly.

Chapter 3

Getting Started

3.1 Compilation on Unix

All the demo programs are compiled automatically in the Unix version.

3.2 Compilation on Windows

All the demo programs are compiled automatically in the Windows version. Single demos may be recom-
piled by navigating to a demo directory in a Ch terminal with the cd and 1 s commands, and then executing
the commands nmake —-f makefile.win32 tocompile ademo, or nmake -f makefile.win32
clean to delete all compiled files.

3.3 Overview of Sample Application Programs

/* File: hello_world/server.c =*/

#include <stdio.h>
#include <libmc.h>

int main ()
{
MCAgency_t agency;
int local_port = 5051;
setbuf (stdout, NULL);
agency = MC_Initialize(local_port, NULL);

MC_MainLoop (agency) ;

MC_End (agency) ;
return 0;

Program 1: A sample Mobile-C server. (demos/getting_started/hello_world/server.c)

Program|I] starts an agency that is capable of receiving mobile agents and executing mobile agent code.

/x File: hello_world/client.c =/

#include <stdio.h>
#include <stdlib.h>
#include <libmc.h>

int main ()

{
MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
int local_port=5050;

MC_InitializeAgencyOptions (&options);
//MC_SetThreadOff (&options, MC_THREAD_CP); /x Turn off command prompt =/

agency = MC_Initialize(local_port, &options);

agent = MC_ComposeAgentFromFile (

"mobagentl", /* Name =/

"localhost:5050", /% Home x/

"IEL", /* Owner =*/

"hello_world.c", /* Filename =x/

NULL, /* Return var name. NULL for no return =/
"localhost:5051", /x Server to execute task on =/

0); /+ Persistent. 0 for no persistence. =/

/+ Add the agent to the agency to start it =/
MC_AddAgent (agency, agent);

MC_MainLoop (agency) ;
MC_End (agency) ;
exit (0);

Program 2: A sample Mobile-C client program. The sole purpose of this program is to send a Mobile-C
agent to another agency. (demos/getting_started/hello_world/client.c)

#include <stdio.h>
#include <libmc.h>

int main ()

{

The header file libmec.h is included at the beginning of the program. It defines all the data types, macros and
function prototypes for the Mobile-C library.

MCAgency_t agency;
int local_port = 5051;

The variable agency, of type MCAgency _t, is a handle that contains information of an agency. The second
line initializes a local variable that will hold the port number we wish the agency to bind to.

agency = MC_Initialize(local_port, NULL);

MC Initialize() takes an integer and the address of an MCAgencyOptions_t variable as its two parameters.
An MCAgencyOptions_t variable is a structure that contains information about which threads to be acti-
vated and the default agent status specified by a user. Here, a NULL pointer is passed to MC_Initialize() as
the second parameter instead of an MCAgencyOptions_t variable to start an agency with default settings. A
local agency will be initialized to listen on port 5051 specified by the variable [ocal_port.

MC_MainLoop (agency) ;
MC_End (agency) ;

return 0;

}

The agency waits indefinitely for a mobile agent by the function MC_MainLoop() .
Program [2] starts an agency that sends a mobile agent to a remote agency. Examining Programs[T|and [2]
we see that there are only two new API function calls:

agent = MC_ComposeAgentFromFile (

"mobagentl", /* Name */

"localhost:5050", /+ Home =*/

"IEL", /* Owner =*/

"hello_world.c", /* Filename «/

NULL, /* Return var name. NULL for no return =x/
"localhost:5051", /% Server to execute task on */

0); /+ Persistent. 0 for no persistence. */

and
MC_AddAgent (agency, agent);

Mobile-C agents may be created from existing source code files. The example above takes a source
code file called hello_world.c and constructs an agent around it. The agent’s name, home, owner,
return variable name, and the host on which to execute the agent are all provided as arguments to the
MC_ComposeAgentFromFile () function.

Then, the newly created agent is added to the local agency so that it may perform its local and/or remote
tasks. In our example, the agent has one remote task, so the agent will migrate to the remote host and
perform its task there.

Also note that any valid hostname may be used in place of “localhost”. The communicating agencies
need not be on the same physical machine; in fact, in most cases they will be on seperate machines. Any
IPv4 string, i.e. “169.237.104.199”, or qualified hostname, i.e. “machine.ucdavis.edu”, may be used. For
instance, the code

MC_ComposeAgentFromFile (
"Bob",
"iel.ucdavis.edu:5050",
"IEL",
"source_code.c",
"169.237.104.199:5055",
NULL,
0);

will send an agent to the server at address “169.237.104.199” listening on port 5055. Or,

MC_ComposeAgentFromFile (
n Lou" ,
"iel.ucdavis.edu:5055",
n IEL" ,
"agent_source.c",
"machine.ucdavis.edu:5031",
NULL,
0);

will send the agent to an agency at “machine.ucdavis.edu” listening on port 5031.

3.4 Mobile-C Bluetooth Agencies (Experimental)

As of Mobile-C version 2.0.2, Mobile-C has support for using Bluetooth as the agent message transport
medium as opposed to the standard TCP/IP. A new option has been added to the MCAgencyOptions_t
structure to indicate whether or not Mobile-C should start as a Bluetooth enabled agency.

Please note that currently, Mobile-C is unable to start as both a Bluetooth agency and a standard TCP/IP
agency. That is, if a Mobile-C agency is initialized to communicate via Bluetooth, that same agency will not
be able to communicate via TCP/IP, and vise versa.

When Mobile-C is initialized as a Bluetooth agency, it enables Mobile-C to send and receive messages
to other Mobile-C Bluetooth agencies, via the short/medium range Bluetooth wireless protocol. A sample
Mobile-C server program that listens for incoming connections is shown below.

/* File: getting_started/bluetooth/server.c x/

#include <stdio.h>
#include <libmc.h>

int main ()
{
MCAgency_t agency;
int local_port = 10; /% Bluetooth RFCOMM ports only go from 0 to 30 =/

MCAgencyOptions_t options;
MC_InitializeAgencyOptions (&options);

10

options.bluetooth = 1;

options.initInterps = 2;
printf("Initializing...\n");
agency = MC_Initialize(local_port,

printf ("Done Initializing.\n");
MC_MainLoop (agency) ;

MC_End (agency) ;
return 0;

Note that this program is very similar to the previous “hello world” server.c, seen at Program [T} One

&options);

major difference to take note is the line which reads

options.bluetooth = 1;

This line sets the option in the Mobile-C options structure to inform Mobile-C to initialize as a Bluetooth

agency.

Also note the initializing port number. Bluetooth RFCOMM port numbers are limited to values from O

to 30. The value “20” was chosen arbitrarily, but it must lie between zero and thirty.

The client program, which sends an agent to the server agency, is also similar to the previous client

program seen at Program 2}

/* File:

#include <stdio.h>
#include <stdlib.h>
#include <libmc.h>

int main ()

{

MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;

int local_port=21;

getting_started/bluetooth/client.c =/

MC_InitializeAgencyOptions (&options);

options.bluetooth = 1;
agency = MC_Initialize(local_port,

agent = MC_ComposeAgentFromFile (

"mobagentl", /* Name x/
"localhost:5050", /% Home =*/
"IEL", /* Owner */

&options);

"master_slave.cpp", /* Filename =/

NULL, /* Return var name.
"00:80:37:2E:45:D2 10", /x Server to execute task on x/

NULL for no return =/

/+ Note that the address is a bluetooth

* device address,

aka MAC address.

The number after

*+ the space is the RFCOMM channel to send to. x/
0); /* Persistent. 0 for no persistence.

/+ Add the agent to the agency to start it =/

MC_AddAgent (agency, agent);

11

*/

MC_MainLoop (agency) ;
MC_End (agency) ;
exit (0);

}

Note that the hostname supplied to the MC_ComposeAgentFromFile () function is composed of the
MAC address of the server Bluetooth device, followed by a space, followed by the port the server agency is
listening on.

3.5 Execution of Sample Applications

In general, each of the demos is designed to have very similar execution procedures. For each demo, there
are one or more “servers”, which are simply vanilla Mobile-C agencies. To run the demo, start all of the
servers (there is only one server for most of the demos), and start the “client” program. Generally, the client
program also starts a Mobile-C agency, but it typically sends an agent to a destination as part of its startup
process as well.

For example, to run the Mobile-C “Hello World” example, run the following commands from a text
terminal on the server machine to start an agency listening on port S051.

cd <MCPACKAGE>/demos/hello_world
./server

Next, run the following commands from a text terminal on the client machine to start an agency listening on
port 5050 and send the mobile agent to the remote agency listening on port S051.

cd <MCPACKAGE>/demos/hello_world
./client

After the mobile agent message is received and the mobile agent code is executed, the string Hello World!
should be printed to the text terminal on the server machine. Note that in this example, both the server and
client are running on the same machine, but this is not a requirement. The field “localhost” may be replaced
with any qualified domain name or IP address.

3.6 The Mobile-C Library

The Mobile-C library allows a Mobile-C agency to be embedded in a program to support C/C++ mobile
agents. In addition, the Mobile-C API gives users a full control over a Mobile-C agency embedded in
a program. Therefore, the Mobile-C library not only provides a significant code mobility for distributed
applications, but also facilitates the development of a multi-agent system that can easily interface with
various hardware devices.

3.6.1 Architecture of the Mobile-C Library

Figure [3.1] illustrates the architecture of the Mobile-C library. The Mobile-C library allows a Mobile-C
agency to be embedded in a program to support C/C++ mobile agents. A Mobile-C agency refers to a
mobile agent platform within which mobile agents exist and operate. The Mobile-C API gives users a full
control over a Mobile-C agency and its different modules.

12

Agency

AMS ACC DF AEE ASM

Figure 3.1: Architecture of the Mobile-C library.

Agency Structure Synchronization
Variable List

Input Data Structures AMS Functionality Threads Qutput Data Structures
ACC Functionality Threads { AEE Threads

DF Functionality Threads
ASM Functionality Threads

Figure 3.2: Implementation overview of the Mobile-C library.

As a IEEE FIPA compliant mobile agent platform, a Mobile-C agency comprises three FIPA normative
modules, Agent Management System (AMS), Agent Communication Channel (ACC) and Directory Facili-
tator (DF). Two additional modules, Agent Execution Engine (AEE) and Agent Security Manager (ASM),
are included in a Mobile-C agency as well. These modules provide different functionalities summarized as
follows.

Agent Management System (AMS)

An AMS controls the creation, registration, execution, migration, persistence, and termination of a mobile
agent. It maintains a directory of Agent Identifiers (AIDs) for registered mobile agents. Each mobile agent
must register with an AMS in order to have a valid AID.

Agent Communication Channel (ACC)

An ACC routes messages between local and remote entities. It is responsible for the interactions between
distributed components, such as inter-agent communication and inter-platform agent transport. The interac-
tions can be performed through Agent Communication Language (ACL) message exchange.

Directory Facilitator (DF)

A DF serves yellow page services. Mobile agents wishing to advertise their services should register with a
DF. Visiting mobile agents can search a DF for mobile agents providing the services they desire.

Agent Execution Engine (AEE)

An AEE serves as the execution environment for mobile agent code. An AEE has to be platform independent
in order to support the execution of mobile agents in a heterogeneous environment.

Each AEE contains an Embedded Ch interpreter to interpret the agent C code. By default, the agency will
preload four interpreters upon startup for interpreting agents. If more than four interpreters are required, the
agency will dynamically allocate extra interpreters as needed. See the reference for MC_Initialize ()
on page [195|for more info.

Agent Security Manager (ASM)

An ASM is responsible for maintaining securita policies for the host system. Some sample tasks of an

13

ASM include identifying users, protecting host resources, authenticating and authorizing mobile agents,
and ensuring the security and integrity of mobile agents.

3.6.2 Implementation of the Mobile-C Library

Figure [3.2] shows the implementation overview of the Mobile-C library. The functionalities of each module
of an agency are implemented as independent threads classified into five categories, that is, the AMS func-
tionality threads, the ACC functionality threads, the DF functionality threads, the ASM functionality threads
and the AEE threads. Each AEE thread is launched by one of the AMS functionality threads.

The Mobile-C library provides API functions to specify which thread needs to be active or inactive
when an agency is initialized. It also provides API functions to access the input and output data structures
associated with the functionality threads. A Mobile-C agency maintains a list of synchronization variables
that can be used with a group of Mobile-C functions to ensure synchronization among mobile agents and
threads. The sizes of the Mobile-C static and shared libraries for Linux are about 500 KB and 390 KB,
respectively.

The header file libmc.h contains definitions of all the structures and functions of the Mobile-C library.

Table lists the currently implemented functions for the binary space.

14

Chapter 4
Composing Agents

Mobile-C agents are represented internally as XML data structures. However, dealing with XML code
requires background knowledge of XML and may be cumbersome. To enhance the convenience of creating
and deploying Mobile-C agents, several different methods of creating agents from C source code files have
been implemented.

Agents may be composed from plain C source code. There are two main ways to compose Mobile-C
agents. Agents may be composed by using the compose_send commmand in the Mobile-C prompt, or by
using the MC_ComposeAgent series of API functions.

4.1 Mobile-C Command Prompt compose _send Command

The compose_agent takes a C source code file and creates a fully functioning agent out of it. The
compose_send command syntax is

compose_send <filename> <target host> <target port>

Many details about an agent generated in this method, such as the agent’s name and owner, are dynamically
generated when creating an agent using this method.

4.1.1 Example Execution Using the compose_send Command

The demo prompt _example has been provided with the Mobile-C package. Note that the source code for
both servers is virtually identical to that in Program|[I] except with added execution instructions. The demo
program is initiated by starting the first agency, named serverl.

$./serverl
Agency 1 started. Please start the second agency by running the command
"server2" on another terminal.

MobileC >
Next, the second agency is started on a seperate terminal.

$./server?
Starting Agency...
You may now try the following commands:

15

compose_send helloworld.c localhost 5050

The previous command will compose an agent using the source
code in "helloworld.c" and send it to the other agency at
port 5050. Then try this command:

compose_send helloworld.c localhost 5051

This will send the "hello_world.c" agent to the local agency.
You may also try these commands at the other agency.

MobileC >

Following the instructions on the second agency, we execute the suggested compose_send command. The
first agency terminal now appears as such:

$./serverl
Agency 1 started. Please start the second agency by running the command
"server2" on another terminal.

MobileC > Hello, world!

Note that the source file helloworld. c has been composed into a mobile agent, migrated to the serverl
agency, and executed.

4.2 Mobile-C MC_ComposeAgent * Functions

There also exist a set of API functions which compose agents from C source files. These functions are
e MC_ComposeAgent () : Compose an agent from program source code.

e MC_ComposeAgentWithWorkgroup () : Compose an agent from program source code with a
workgroup code.

e MC_ComposeAgentFromFile () : Compose an agent from a program source code file.

e MC_ComposeAgentFromFileWithWorkgroup () : Compose an agent from a program source
code file with a workgroup code.

e MC_AgentAddTask () : Add an additional task to an already formed agent.

e MC_AgentAddTaskFromFile () : Add an additional task to an already formed agent from a C
source code file.

For an example of the usage of these functions, please refer to program 3]

4.3 Agent Workgroups
In order to provide an added layer of organization and security, agents may be created which belong to

a workgroup. A workgroup’s name may be an ASCII text string of any length. If an agent belongs in a
workgroup, then certain actions on that agent may only be performed by other agents in the same workgroup.

16

/* File: multi_task_example/client.c =/

#include <stdio.h>
#include <libmc.h>

int main ()

{
MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
double xagent_return_value;
int task_num;
int local_port=5050;
int remote_port=5051;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /x Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);

/+ Compose the agent from a task source file x/
agent = MC_ComposeAgentFromFile (
"mobagent3", /* Name */
"localhost:5050", /+ Home — This is the host the agent will return to
+ when it has finished its tasks. */

"IEL", /* Owner =*/

"taskl.c", /% Code filename =/
"results_taskl", /* Return Variable Name */
"localhost:5051", /x server/destination host x/
0 /* persistent x/

)i

/+ Add one more task */
MC_AgentAddTaskFromFile (

agent, /+ Agent handle x/

"task2.c", /* Task code file name =*/
"results_task2", /* Return Variable Name */
"localhost:5052", /x server/destination host x/
0); /% Persistent =/

/* Add the agent =/
MC_AddAgent (agency, agent);

MC_End (agency) ;
return 0;

Program 3: An agency building an agent with multiple tasks from seperate source code files.

17

Thus, if a group of agents keeps their workgroup name private, no agents outside of that group will be able
to terminate, delete, or otherwise affect the agents within the workgroup. All agents are still able to interact
through FIPA ACL messages.

For an example of agent workgroups in action, please see the demo program in the
demos/agent _workgroup_example directory.

18

Chapter 5

Agent Data

Agents have the ability to carry pieces of data with them as they migrate from host to host. The data carried
by an agent can be categorized into two broad types: “agent return data” and “agent saved variables”.

5.1 Agent Return Data

“Agent return data” is typically used to store a piece of data being returned to the agent’s home agency. For
instance, if an agent is given a task to obtain a single result from a remote host, the agent might store the
result as its agent return data. An agent may hold a single return value for each one of its tasks. The return
value may be of any standard C type, or an array of such a type. For instance, the double type, as well as
double[5] [3] are both valid types for a piece of agent return data, since both are examples of a standard
C type or an array of a standard type. User defined structs and unions may not be returned as a piece of
return data.

In order to return a variable as agent return data, the name of the return variable simply needs to be
specified when composing the agent. No further API calls need to be executed from within the agent code.
Note that the return variable must be declared as a global variable in the agent code. For an example of an
agent with multiple tasks returning information to its home agency, please see Program [3|on page[17}

5.2 Agent Saved Variables

An “agent saved variable” is also carried with an agent as it migrates. However, this type of variable is
typically used for data that the agent itself has access to as it completes its tasks. Furthermore, an agent may
save the value of as many variables as it desires per task. For instance, during an agent’s first task, it may
save various values, like the number of other agents on the agency as an int, and the name of the agency
as a char [80]. After it migrates to it’s second task, it may access the variables it saved previously on the
first host. In this way, an agent could calculate the total number of active agents in an agency network. In
summary,

Agent Return Data Agent Saved Variable
May save multiple variables per task X
Data easily retrieved by home agency X X
Data saved to agent automatically
without agent-space API calls X
Agent can access its own saved data X

For example, consider an agent with the following tasks. The agent’s first task appears as such:

19

#include <stdio.h>

#include <math.h>

int savevar;

int another_savevar;

int array_savevar[10];

int main ()

{
int i;
printf ("Hello World!\n");
printf ("This is mobagentl from the agency at port 5050.\n");
printf ("I am performing the task on the agency at port 5051 now.\n");
printf ("$f\n", hypot(1,2));
savevar = 10;
another_savevar = 20;
mc_AgentVariableSave (mc_current_agent, "savevar");
mc_AgentVariableSave (mc_current_agent, "another_ savevar");
for(i = 0; 1 < 10; 1i++) {

array_savevar[i] = ix3;

}
mc_AgentVariableSave (mc_current_agent, "array_savevar");
return 0;

}

Note that the variable to be saved must be a global variable. In the agent code, the agent performs a call to the
function mc_AgentVariableSave (mc_current_agent, "savevar"); The first argument in the
function is a handle to an agent. The handle mc_current _agent is a special handle an agent has to itself.
The second argument is a character string denoting the name of the variable to save. In effect, this code
saves the value of savevar to itself. As shown in the preceding code, the mc_AgentVariableSave ()
function may be called multiple times on differing variable types and arrays. Each variable will be saved to
the agent prior to migration.
Here is an example of the agent’s second task’s code:

#include <stdio.h>
int retvar;
int main ()
{
const int *ij;
i = (int*)mc_AgentVariableRetrieve (mc_current_agent, "savevar", 0);
if (1i==NULL) {
printf ("Variable ’savevar’ not found.\n");
} else {
printf ("Variable ’savevar’ has value %d.\n", =*1i);
}
retvar = *1+*2;
return 0;

}

Note the call to mc_AgentVariableRetrieve (mc_current_agent, "savevar", 0); in this
code example. This function attempts to retrieve a pointer to the saved variable. The first argument, as seen

20

before, is a handle to the agent itself. The second variable is the name of the variable to retrieve. The third
argument is the task from which to retrieve the variable, with the value 0 being the first task. If the call
succeeds, it will return a valid pointer to the saved variable. If it fails, the function returns NULL.

21

Chapter 6

Mobile-C Agent Migration Message Format

6.1

General Message Format

The message format for an agent migration message is designed such that multiple tasks and multiple code
blocks can be migrated from agency to agency. The message is an XML message with encapsulated C code.
An example of a rudimentary agent can be seen in Program [on page 23] Following is a brief description
of each XML tag.

MESSAGE: This tag indicates to Mobile-C that the following data is a Mobile-C message. The mes-
sage type is included in the attribute “message”.

MOBILE_AGENT: This tag indicates that the contained data is a Mobile-C agent.

AGENT_DATA: This tag indicates that the contained data is data pertaining to this particular agent.
NAME: The name of the agent.

OWNER: The owner of the agent.

HOME: The home of the agent. Any agent that has data to “return” will return it to this address by
default.

WG_CODE: The workgroup code of the agent. Workgroup codes are kept secret by the agent. Only
agents with matching workgroup codes are allowed to perform certain operations on each other, such
as agent deletion.

TASKS: This indicates that the following information pertains to the task or tasks the agent is intended
to perform. Attributes found under the TASKS tag include:

— task : The total number of tasks the agent has.

— num : The task that the agent is currently on.
TASK: Each seperate TASK tag indicates a seperate task for the agent to perform. The tasks may be
seperate hosts and/or code blocks. In the rudimentary example, there is only one task. Listed below
are the attributes of TASK tags.

— num: The number of the task. The first task is task number zero.

— complete: Completeness of the task

— server: The host to perform the task

22

<!-— File: hello_world/testl.xml —-->
<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost :5050</HOME>
<WG_CODE>test_workgroup</WG_CODE>
<TASKS task="1" num="0">
<TASK num="0" return="no-return" complete="0" server="localhost:5051" />
<AGENT_CODE>
<! [CDATA[
/x#define A 2%/
#include <stdio.h>
#include <math.h>
int main ()
{
charx str;
printf ("Hello World!\n");
printf ("This is mobagentl from the agency at port 5050.\n");
printf ("I am performing the task on the agency at port 5051 now.\n");
printf ("$f\n", hypot(l,2));

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 4: A rudimentary agent. (demos/getting_started/hello_world/test1.xml)

23

return: Name of the return variable

persistent: Persistence of the agent
— return_value: Return value, if not an array

— code_id: ID of the code block to execute
complete and server are mandatory attributes, and others are optional attributes.

e AGENT_CODE: Each AGENT_CODE block represents a block of code that the agent may execute.
Agents with multiple code blocks may decide at run-time which block to execute. Valid attributes
under the AGENT_CODE tag include

— 1d: The id of the code segment, as referenced by the TASK attribute, code_id.

6.2 Multiple Tasks with a Single Code Block

An agent may have an indefinite number of tasks. The agent will perform the tasks in ther order that they are
stated in the XML file, completing each one before continuing to the next host. Following is an example of
an agent which has multiple tasks to perform, executing the same code block at each new host. See Program

[5|on page [23] for an example.

6.3 Multiple Tasks with Multiple Code Blocks

See Program [6] on page [27] for a more complicated example of agent code including multiple tasks and
multiple code blocks. Note that each code block has an associated ID which is refered to in the respective
“DATA” tags. Also note that more than one “DATA” tag may refer to the same code block. Thus, an agent
may have more “DATA” tags than code blocks.

6.4 Multiple Mobile Agent performs Task on Multiple Hosts

Program[7)on page [29)is a client that sends two different mobile agents to two different hosts. In for loop, it
waits for the arrival signal of mobile agent. When an agent arrives it prints the result and delete that agent.
For loop is iterated same as total number of mobile agents send by client. The two mobile agents having
different name are shown in Program [§and Program [0

6.5 Agent Return Messages

9., ¢

If the “name” attribute in an agent’s “DATA” tag is not set to “no—return”, the agent will generate an
agent-return message upon completion of all of its tasks. The agent will generate a return message containing
the contents of the variable name specified in the “name” attribute. For instance, Program
shows a simple agent which will migrate to another agency, generate a three-dimensional array called “a”,
and return the contents of the array to the “HOME” host upon completion. Note that the return variable must
be global so that the contents are not destroyed upon completion of the main function.

An example of the return message that is generated by this agent can be seen in Program|11 on page 33
Notice also in the return message that the variable type has been changed from “int” as it was in the original
program to “short” and that the “dim” attribute has been changed to 3. This is because Mobile-C automati-
cally checks the type and dimension of the variable it is returning and assign those attributes automatically.

24

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 3</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="2" num="0">
<TASK num="0" return="results_iel2" complete="0" server="localhost:5051" />
<TASK num="1" return="results_ch" complete="0" server="localhost:5052" />
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

double results_iel2;
double results_ch;

int main ()
{
FILE * fptr;
char line[1024];
double velocity, count = 0, sum = 0;

printf ("\nThis is the mobile agent 3 from the birdl machine.\n\n");

printf ("My task on the %s is to find the average velocity of ", mc_host_name);
printf ("vehicles passed under the %s detection station.\n\n", mc_host_name);
if (mc_task_progress == 0) {

if ((fptr = fopen("ChDataFile_iel2", "r")) == NULL)

{
printf ("Error: could not open file ’'ChDataFile_iel2’ .\n");
exit (EXIT_FAILURE);

}

} else {
if ((fptr = fopen("ChDataFile_ch", "r")) == NULL)

Program 5: An example agent containing two tasks and a single code block. Note that variables
“mc_host_-name” and “mc_task_progress” are special built-in variables described in Table [B.3 on page 247/}
(<MCPACKAGE>/demos/composing_agents/multi_task_example/test_single_code block.xml)

25

printf ("Error: could not open file ’‘ChDataFile_ch’.\n");
exit (EXIT_FAILURE) ;

fgets(line, sizeof(line), fptr);
while (!feof (fptr))
{
velocity = atof(strrchr(line, ’,’) + 1);
sum += velocity;
count++;
fgets(line, sizeof(line), fptr);
}
if (count != 0)
{
if (mc_task_progress == 0) {
results_iel2 = sum/count;
} else {
results_ch = sum/count;

printf ("The average velocity under the detection station is %f.\n\n", sum/count);
}
else
{

results_iel2 = 0;

results_ch = 0;

printf ("There is no vehicle passed under the detection station.\n\n");

fclose (fptr);
printf ("I am leaving to go to the next host.\n");

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 5: (Continued)

26

<!—— File: multi_task_example/test_multi_code_blockl.xml —->

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>

<MESSAGE message="MOBILE_AGENT">

<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 3</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="2" num="0">

<TASK num="0" return="results_iel2" complete="0" server="localhost:5051" code_id="1"/>
<TASK num="1" return="results_ch" complete="0" server="localhost:5052" code_id="2"/>

<AGENT_CODE id="1">
<! [CDATA[
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

double results_iel2;
int main ()
{
FILE * fptr;
char 1line[1024];
double velocity, count = 0, sum = 0;

printf ("\nThis is the mobile agent 3 from the birdl machine.\n\n");

printf ("My task on the %s is to find the average velocity of ", mc_host_name);
printf ("vehicles passed under the %s detection station.\n\n", mc_host_name);

if ((fptr = fopen("ChDataFile_iel2", "r")) == NULL)

{
printf ("Error: could not open file ’'ChDataFile_iel2’ .\n");
exit (EXIT_FAILURE) ;

fgets(line, sizeof(line), fptr);
while (!feof (fptr))
{
velocity = atof(strrchr(line, ’',’) + 1);
sum += velocity;
count++;
fgets(line, sizeof(line), fptr);
}
if (count != 0)
{
results_iel2 = sum/count;

printf ("The average velocity under the detection station is %f.\n\n", sum/count);

}

else

{

results_iel2 = 0;

printf ("There is no vehicle passed under the detection station.\n\n");

}
fclose (fptr);
printf ("I am leaving to go to the next host.\n");

Program 6: An example agent cont@hing two

tasks and two

code blocks.

(<MCPACKAGE>/demos/composing_agents/multi_task_example/test_multi_code block.xml)

return 0;

11>
</AGENT_CODE>
<AGENT_CODE id="2">
<! [CDATA[
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

double results_ch;

int main ()
{
FILE * fptr;
char 1line[1024];
double velocity, count = 0, sum = 0;

printf ("\nThis is the mobile agent 3 from the birdl machine.\n\n");

printf ("My task on the %s is to find the average velocity of ", mc_host_

name) ;

printf ("vehicles passed under the %s detection station.\n\n", mc_host_name);

if ((fptr = fopen("ChDataFile_ch", "r")) == NULL)

{
printf ("Error: could not open file ’'ChDataFile_ch’ .\n");
exit (EXIT_FAILURE);

fgets(line, sizeof(line), fptr);
while (!feof (fptr))
{
velocity = atof(strrchr(line, ’,’) + 1);
sum += velocity;
count++;
fgets(line, sizeof(line), fptr);
}
if (count != 0)
{
results_ch = sum/count;
printf ("The average velocity under the detection station is %f.\n\n",
}
else
{
results_ch = 0;
printf ("There is no vehicle passed under the detection station.\n\n");

fclose (fptr);
printf ("I am leaving to go to the next host.\n");

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 6: (Continued)
28

sum/count) ;

#include <stdio.h>
#include <stdlib.h>
#include <libmc.h>
#define TotalMA 2

int main ()
{
MCAgency_t agency;
MCAgent_t agent;
MCAgencyOptions_t options;
int my_port = 5125;
int dim, 1i;
const double xdata;
char xname;
MC_TInitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =*/
agency = MC_Initialize (my_port, &options);
/+ Note: The third argument of the following function may also be a
valid IP address in the form of a string. i.e. 192.168.0.1 */
/* Sending to first host =*/
MC_SendAgentFile (agency, "testl.xml");
/* Sending to second host =/
MC_SendAgentFile (agency, "test2.xml");

/+ This loop 1is iterated until all mobile agents are received =/
for (i=0; i<TotalMA; i++) {

/* Wait for return-agent arrival signal =/

MC_WaitSignal (agency, MC_RECV_RETURN) ;

/* Catching the mobile agent =/
agent = MC_RetrieveAgent (agency) ;
name = MC_GetAgentName (agent) ;

printf ("$s\n", name);
if (agent == NULL) {
fprintf (stderr, "Did not receive correct agent. \n");
exit (1) ;

}

dim = MC_AgentReturnArrayDim(agent, O0);
data = MC_AgentReturnDataGetSymbolAddr (agent, 0);
printf ("Return Data from agent %d is %0.3f \n",i+1l, datal[0]);
MC_DeleteAgent (agent) ;
MC_ResetSignal (agency) ;

}// end for

MC_End (agency) ;

exit (0);

Program 7: A client program that sends two mobile agents to two different hosts
(<MCPACKAGE>/demos/agent migrationmessage_format/multi_data_retrieval/client.c)

29

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5125</HOME>
<TASKS task="1" num="0">
<TASK num="0" return="a" complete="0" server="localhost:5130" />
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
#include <math.h>
double a;
int main ()
{
printf ("This is mobagentl from the agency at port 5050.\n");
a = 3.5;
printf("\n a = $f\n", a);
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 8: First mobile agent name “mobagentl” send by client (Program 6) to server 1
(<MCPACKAGE>/demos/agent migration_message_format/multi_data_retrieval/testl.xml)

30

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5125</HOME>
<TASKS task="1" num="0">
<TASK num="0" return="a" complete="0" server="localhost:5052" />
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
#include <math.h>
double a;
int main ()
{
printf ("This is mobagent2 from the agency at port 5050.\n");
a = 5.5;
printf("\n a = $f\n", a);
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 9: Second mobile agent name “mobagentl” send by client (Program 6) to server 2
(<MCPACKAGE>/demos/agent migration_message_format/multi_data_retrieval/test2.xml)

31

<!-— File: mc_array_return_example/agent.xml —-—>
<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5050" return="a">
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int af2][3][2];
int main ()
{
int 1, 3j, k, 1;

k = 0;
for (i = 0; i < i++) |
for (3 = 0; < 37 J++) A

ali] [J1[1]1 = k;
k++;
printf("sd ", i+3);

2;
j]

for(l = 0; 1 < 2; 1++) {
[J

}

printf ("\nThis is a mobile agent from port 5050.\n");

printf ("I am performing the task on the agency at port 5051 now.\n");
sleep(l);

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 10: An agent which returns data upon completion of it’s tasks.

32

<!—-— File: mc_array_return_example/return_agent.xml —-->
<?xml version="1.0"7?>

<!DOCTYPE myMessage SYSTEM "mobilec.dtd">
<MOBILEC_MESSAGE>
<MESSAGE message="RETURN_MSG">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<WG_CODE />
<TASKS task="1" num="1">
<TASK num="0" server="localhost:5050" return="a">
<DATA name="a" dim="3" type="short">
<ROW index="0">
<ROW index="0">
<ROW index="0"> 0,1, </ROW>
<ROW index="1"> 2,3, </ROW>
<ROW index="2"> 4,5, </ROW>
</ROW>
<ROW index="1">
<ROW index="0"> 6,7, </ROW>
<ROW index="1"> 8,9, </ROW>
<ROW index="2"> 10,11, </ROW>
</ROW>
</ROW>
</DATA>
</TASK>
<AGENT_CODE><! [CDATA [
#include <stdio.h>
short a[2][311[2];
int main ()
{
int i, 3, k, 1;
k = 0;
for (i = 0; 1 < 2; 1i++) {
for (3 = 0; 3 < 3; Jj++) |
for(l = 0; 1 < 2; 1++) {
alil (31011 = k;
k++;
printf("sd ", i+3);

}

printf ("\nThis is a mobile agent from port 5050.\n");

printf ("I am performing the task on the agency at port 5051 now.\n");
sleep(l);

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

33

Program 11: Agent return data xml format. Note: This XML code has been reformatted to a more human-
readable format. The actual format generated may differ.

6.6 Agent Saved Variables

As of Mobile-C version 1.10.0, Mobile-C agents have the ability to save an arbitrary number of variables
while migrating from task to task. Agents may use the agent-space api functions mc_AgentVariableSave ()
and mc_AgentVariableRetrieve to save and later retrieve variables. An example agent which does
this may be viewed at the documentation for the mc_ AgentVariableSave() and
mc_AgentVariableRetrieve () functions on pages[280]and respectively.

As the agent is migrating from host to host with saved data, the data is encapsulated in the agent’s XML
code. <DATA> tags are created as children of each <TASK> tag to store data. See Program [I2] for an
example of an agent that is migrating with saved data. The valid attributes within a <DATA> tag are

e name: The name of the saved variable.
e dim: The array dimension of the saved variable.
e type: The type of the variable.

e value: (optional) If the variable has zero dimensions, the value is stored in this attribute. Otherwise,
children <ROW> tags must be created to store the array.

Each <DATA> tag may also have children <ROW> tags, if the data is an array. The valid attributes of the
<ROW> tags are

e index: The index of the row.

Note also that each <ROW> tag may contain additional <ROW> children depending on the dimension of the
array being stored.

The Mobile-C XML Data Type Definition (DTD), which defines the format of a well-formed Mobile-C
agent migration message, may be seen in Section on page|343

6.7 Stationary/Persistent Mobile Agents

A Stationary agent may be achieved in Mobile-C simply by creating an agent which never migrates. This is
commonly achieved using a couple of different techniques.

6.7.1 An Agent with an Infinite Task

An agent may be considered stationary if it’s task never ends. For instance, if the task of an agent is of the
form:

while (1)

{
cmd = wait_for_command () ;
execute_command (cmd) ;

}

Since the previous task never ends, the agent will never terminate and the agent will remain stationary in it’s
agency.

34

6.7.2 The “persistent” Agent Flag

The “persistent” flag as mentioned in Section[6.1|may be used to create a persistent agent. The example
described in Chapter [9 uses such a technique. This technique creates an agent which is not automatically
flushed by the agency after it completes it’s task. Thus, the agent remains dormant and stationary in the
agency without external stimulus.

Terminating Persistent Agents

Persistent agents should be terminated when they are no longer needed to free up resources. They may
be terminated by using the API functions MC DeleteAgent () or MC_TerminateAgent () functions
from C-space, or the functions mc_DeleteAgent () orMC_TerminateAgent () functions from agent-
space. Since a persistent agent cannot terminate itself, it is up to either the host agency or another agent to
terminate the persistent agent.

35

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">
<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="2" num="1">
<TASK num="0" server="localhost:5051" complete="1" code_id="1" return="no-return">
<DATA name="savevar" dim="0" type="int" value="10" />
<DATA name="another_savevar" dim="0" type="int" value="20" />
<DATA name="array_savevar" dim="1" type="int">
<ROW index="0"> 0,3,6,9,12,15,18,21,24,27,</ROW>
</DATA>
</TASK>
<TASK num="1" server="localhost:5052" complete="0" code_id="2" return="no-return" />
<AGENT_CODE id="1">
<! [CDATA[
//#include <stdio.h>
#include <math.h>
int savevar;
int another_savevar;
int array_savevar[10];
int main ()
{
int 1i;
printf ("Hello World!\n");
printf ("This is mobagentl from the agency at port 5050.\n");
printf ("I am performing the task on the agency at port 5051 now.\n");
printf ("$£f\n", hypot(1,2));
savevar = 10;
another_savevar = 20;
mc_AgentVariableSave (mc_current_agent, "savevar");
mc_AgentVariableSave (mc_current_agent, "another_savevar");
for(i = 0; 1 < 10; i++) {
array_savevar[i] = 1ix3;
}
mc_AgentVariableSave (mc_current_agent, "array_savevar");
return O;

11>
</AGENT_CODE>
<AGENT_CODE id="2">
<! [CDATA[
#include <stdio.h>
int retvar;
int main ()

{

Program 12: This XML format illustrates an agent which is currently in the process of migrating with saved
data. Note that the agent contains two tasks, and the first task has been completed. This file is a snapshot of
the agent as it is in transit from task 0’ to task *1°. Note the <DATA> tags which store the three variables
referenced by the mc_AgentSaveVariable () function from within the code, storing two integers and
an integer array. Note that in general, any data type may be stored, including multi-dimensional arrays.

36

const int *i;
i = (intx)mc_AgentVariableRetrieve (mc_current_agent,
if (i==NULL) {
printf ("Variable ’savevar’ not found.\n");
} else {
printf ("Variable ’savevar’ has value %d.\n", =*1i);
}
retvar = *xix2;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>

</MOBILEC_MESSAGE>

Program 12: (Continued)

37

"savevar", 0);

Chapter 7

Mobile-C FIPA Compliant ACL Messages

Mobile-C has the ability to send and receive FIPA compliant agent communication language (ACL) mes-
sages. More information about FIPA, the Foundation for Intellegent Physical Agents, may be found at
http://www. fipa.org. This functionality allows Mobile-C agent to communicate with each other, as
well as with agents from other agencies that are also FIPA compliant. Demos of communication with JADE
agents may be found in the directories <MCPACKAGE>/demos/ jade_to_mc_example and
<MCPACKAGE>/demos/mc_to_jade_example.

7.1 Constructing and Sending an ACL Message

The general process for constructing an ACL message involves filling out required portions of an ACL mes-
sage structure of type struct fipa_acl message_s and passing the message to the MC_AclSend ()
function. A number of helper functions exist in order to simplify the process of allocating memory and
setting certain fields of the acl message. Some typical functions used to compose a new ACL message are
the following:

e MC_AclSetPerformative: Set the FIPA performative of the message. See Program [I3] for a
complete listing of valid FIPA performative enumerations.

e MC_AclSetSender: Sets the ’sender’ field of the message.
e MC_AclAddReceiver: Adds addresses to the 'receiver’ field of the message.
e MC_AclSetContent: Sets the 'content’ field of an ACL message.

A detailed example of sending and receiving messages will be presented in Chapter 8]

7.2 Receiving an ACL Message

Every agent residing on a Mobile-C agency has a mailbox allocated to it. At any time, the agent may check

the mailbox for new ACL messages, or an agent may choose to wait on an empty mailbox until a new mes-
sage arrives. These two tasks are done by the functions MC_AclRetreive () andMC_AclWaitRetrieve (),
respectively. Another useful function which may be used with a received ACL message is the MC_Ac1Reply ()
function. This function takes an ACL message as an input argument and automatically forms an ACL reply
message addressed to the original sender. Note that the performative and new sender fields in the reply
message are not automatically initialized and will still need to be set by the agent. A detailed example of an
agent receiving and replying to a message may be found in Chapter 8]

38

enum fipa_performative_e

{

FIPA_ERROR=-1,
FIPA_ZERO,
FIPA_ACCEPT_PROPOSAL,
FIPA_AGREE,

FIPA CANCEL,
FIPA_CALL_FOR_PROPOSAL,
FIPA_CONFIRM,

FIPA DISCONFIRM,
FIPA_FAILURE,
FIPA_INFORM,

FIPA_ INFORM IF,
FIPA_INFORM REF,
FIPA_NOT_UNDERSTOOD,
FIPA_PROPOGATE,
FIPA_PROPOSE,
FIPA_PROXY,
FIPA_QUERY_IF,
FIPA_QUERY_REF,
FIPA_REFUSE,
FIPA_REJECT_PROPOSAL,
FIPA_REQUEST,
FIPA_REQUEST_WHEN,
FIPA REQUEST WHENEVER,
FIPA_SUBSCRIBE

Program 13

: Fipa Performative Enumerations.

39

Chapter 8

Mobile-C Binary Stationary Agents

Mobilec has support for hosting binary-space stationary agents. The agents are implemented as system
threads. As such, the only limit to the number of stationary agents residing on an agency are the system
resources of the host agency.

The binary agents are able to call any of the C-space API functions, suchas MC_AclWaitRetrieve ().
This allows stationary agents to communicate and interact with other mobile and stationary agents using
FIPA ACL messages, as introduced in Chapter|[7]

Stationary agents may be used in any application in which agent mobility is unnecessary. Stationary
agents can typically perform any task a mobile agent can perform, except migration. Furthermore, stationary
agents tend to execute faster and consume less system resources.

Mobile-C stationary agent threads are added using the MC_AddStationaryAgent () API function.
See Program [I4]for an example of a stationary agent.

The MC_AddStationaryAgent () function takes three arguments:

1. A handle to the home agency. This is the agency the new agent will reside under.

2. The agent thread. This is a pointer to a function which will execute and act as the stationary agent. If
the function returns, the stationary agent is terminated.

3. An optional argument to pass to the agent. If additional information or data needs to be passed to the
stationary agent thread, a pointer of any type may be supplied as the third argument to
MC_AddStationaryAgent (). This pointer may later be retrieved with the
MC_AgentInfo_GetAgentArgs () function from within the agent.

The stationary agent thread must have a prototype of the form
voidx agent_func_name (stationary_agent_info_t+* agent_info);

As seen in the prototype, the agent thread receives an argument of type stationary_agent_info_t.
This special type is a structure which contains information about the the agent, such as its name, and the
location of its mailbox. Certain information may be retrieved from the function parameter by using the
MC_Agent Info_x series of API functions, which include:

e MC_AgentInfo_GetAgency () : Retrieves a handle to the host agency.
e MC_AgentInfo_GetAgent () : Retrieves a handle to the agent information structure.

e MC_AgentInfo_GetAgentArgs () : Retrieves the pointer that was given as an agent argument
during the call to MC_AddStationaryAgent.

Example usage of these functions may be seen in Program[14]

40

/+ File: stationary_agent_communication/server.c x/

#include <stdio.h>
#include <libmc.h>
#include <fipa_acl.h>

voidx stationary_agent_func(stationary_agent_info_t* stationary_agent_info)
{

/* Wait for and receive a message x/

fipa_acl_message_tx acl_message;

fipa_acl_message_t*x reply_message;

printf ("Stationary agent online.\n");
printf ("Stationary agent waiting for ACL message...\n");
acl_message = MC_AclWaitRetrieve (MC_AgentInfo_GetAgent (stationary_agent_info));
if (acl_message != NULL) {
printf ("Received an ACL message.\n");
printf ("ACL message content is \"%s\"\n",
MC_AclGetContent (acl_message)) ;
printf ("Composing a reply to the message...\n");
reply_message = MC_AclReply(acl_message);
MC_AclSetPerformative (reply_message, FIPA_INFORM);
MC_AclSetSender (reply_message, "agentl", "http://localhost:5051/acc");
MC_AclSetContent (reply_message, "Hello to you too, agent2!");
MC_AclSend (
MC_AgentInfo_GetAgency (stationary_agent_info),
reply_message) ;
} else {
printf ("Error retrieving ACL message\n");

#ifndef _WIN32
fflush (stdout) ;
fendif
return NULL;

int main ()

{
MCAgency_t agency;
MCAgencyOptions_t options;
int local_port = 5051;
MC_InitializeAgencyOptions (&options);
/+ If the following line is uncommented, the command prompt
* will be disabled. x/
MC_SetThreadOff (&options, MC_THREAD_CP);
agency = MC_Initialize(local_port, &options);
MC_AddStationaryAgent (agency, stationary_agent_func, "agentl", NULL);

MC_MainLoop (agency) ;

MC_End (agency) ;
return 0;

Program 14: A sample program which starts a single stationary agent that responds to FIPA ACL messages.

41

Chapter 9

Interface between Binary and Mobile Agent
Spaces

An embeddable C/C++ interpreter Ch was chosen to be the AEE in the Mobile-C library to support C/C++
mobile agents. Therefore, in order to access the variables, functions, and data sets in the mobile agent space
from the binary space, Ch must be first embedded in the binary space. The function MC_GetAgentExecEngine()
in Table [A.5|returns the AEE associated with a mobile agent to the binary space. Using the AEE returned
by MC_GetAgentExecEngine(), all of the Embedded Ch functions [12] can be called in a binary C/C++
program to access the variables, functions, and data sets defined in the mobile agent space. The Embedded
Ch toolkit also allows mobile agent code to invoke C/C++ functions defined in a binary C/C++ program.

The Embedded Ch toolkit reduces the complexity of heterogeneous development environment for both
embedded scripting and applications. With the consistent C/C++ code base, it can significantly reduce the
effort in the software development and maintenance. Moreover, with the Embedded Ch toolkit, C/C++
applications can be extended with all the features of Ch including built-in string type for scripting. The
Embedded Ch toolkit has a small footprint. The pointer and time deterministic nature of the C language
provide a perfect interface with hardware in real-time systems.

9.1 Using an Agent Initialization Callback Function to Intergrate Binary
and Script Space Code

The user may register a callback function to be called during the initialization of mobile agents inside of
an agency. This allows the user to fine-tune an agent and the Ch interpreter before an agent is executed.
The callback function is added using the MC_AddAgentInitCallback () function, and the callback
function is of the form

int callback (ChInterp_t interp, MCAgent_t agent, voidx user_data);

The user may call any applicable Ch API function on the interpreter, as well as any applicable Mobile-C
API function on the supplied agent. For instance, the user may use the Ch_DeclareVar () function to
declare extra variables inside of the interpereter which the agent will be able to access during its execution.

The demo located at demos/cspace—agentspace_interface/agent_init_callback/ pro-
vides a demonstration of the callback function. This demo uses the callback function to declare a new
function in each of the incoming agent interpreters called mult (), which simply multiplies two num-
bers together. This means that any incoming agent will be able to call the mult () function, which re-
sides in C-space, from the agent script-space. This demo may also be seen with the documentation for
MC_AddAgentInitCallback () on page

42

#include <libmc.h>

#include <stdio.h>
#ifndef _WIN32
#include <unistd.h>
felse

#include <windows.h>
fendif

int main ()

{
/+ Init the agency x/
MCAgency_t agency;
MCAgencyOptions_t options;
int local_port=5050;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =/
agency = MC_Initialize(local_port, &options);

/* Note: The third argument of the following function may also be a
valid IP address in the form of a string. i.e. 192.168.0.1 «/

MC_SendAgentFile(agency, "testl.xml");

MC_End (agency) ;

return 0;

Program 15: A program which sends a persistent mobile agent.

(<MCPACKAGE>/demos/cspace—agentspace_interface/persistent_example/client.

9.2 Invoke a Mobile Agent Space Function from Binary Space

This example illustrates how to call a function defined in mobile agent code by using the Mobile-C library
and Embedded Ch toolkit. The mobile agent in this example is a persistent agent, which is not removed
upon termination of its execution.

The client program shown in Program [I5]starts a Mobile-C agency listening on port 5050 by the function
MC _Initialize(), and sends a mobile agent to the remote agency running on host localhost at port 5051
through the function MC_SendAgentMigrationMessageFile(). The filename including the full path of the
mobile agent is specified from the standard input.

The mobile agent sent to the remote agency is shown in Program|16 on the next pagel The name, owner,
source machine of the mobile agent are mobagentl, IEL, and localhost:5050, respectively. The mobile agent
is persistent since the flag persistent is set to 1 in Program[16] This flag can be set to 0 or removed by a user
for a non-persistent mobile agent. The embedded mobile agent code is a simple but complete C program
which defines the function hello() to be called in the server program.

As shown in Program[I7 on page 45] the server program starts a Mobile-C agency listening on port 5051
by the function MC_Initialize(), and waits for a mobile agent. The mobile agent named mobagentl is found
by the function MC_FindAgentByName() , and the AEE associated with the mobile agent is obtained by the
function MC_AgentExecEngine() . The variable returned by MC_AgentExecEngine() is a Ch interpreter of
data type Chinterp_t. This variable is the first parameter for all of the Embedded Ch functions. The function
hello() defined in the mobile agent code is invoked by the Embedded Ch function Ch_CallFuncByName().

There are several different methods to call functions in mobile agent space from the binary space using

43

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0"
complete="0"
server="localhost:5051"
persistent="1"
>
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main ()
{
printf ("The sample persistent agent has now arrived.\n");
return 0;

int hello(int a, int b)

printf ("Hello!!!\n");

printf ("This text is being generated from within the 'hello ()’ function!\n");
printf ("I received arguments of value %d %d.\n", a, b);

return 4;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 16: A persistent mobile agent. Agents marked “per-
sistent” are not flushed from the agency after they terminate.
(<MCPACKAGE>/demos/cspace—agentspace_interface/persistent_example/testl.xml)

the Embedded Ch API. Here we describe the function Ch_CallFuncByName() used in Program [T7] With
Ch_CallFuncByName(), a function defined in the mobile agent space can be called by its name. The proto-
type of Ch_CallFuncByName() is shown as follows.

int Ch_CallFuncByName(Chlnterp_t interp, char *name, void *retval, ...);

The first argument is an instance of the Ch interpreter. The second argument is a string containing the
name of the function to be called. The function name is associated with a function defined in mobile agent
code. The third argument is a pointer containing the address of the return value of the called function. If
the called function takes any arguments, the arguments should be listed after the third argument, retval.
Ch_CallFuncByName() returns zero on successful execution or non-zero on failure.

44

#include <libmc.h>
#include <embedch.h>
#include <stdio.h>

int main ()

{
MCAgency_t agency;
MCAgent_t agent;
int retval;
MCAgencyOptions_t options;
int local_port=5051;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =*/

/* Init the agency x/

agency = MC_Initialize(
local_port,
&options);

printf ("Please press ’'enter’ once the sample agent has arrived.\n");
getchar () ;
agent = MC_FindAgentByName (agency, "mobagentl");

if (agent == NULL) {
printf ("Could not find agent!\n");
exit (0);

}

/+ The following executution of code may be performed two different
ways: The first way, which is commented out in this example,
involves retrieving the agent’s interpreter with
MC_GetAgentExecEngine () and using the Embedded Ch api to call
the function. The second method involves using the Mobile-C
api to call the function. Both of these methods used here produce
identical results. */

MC_CallAgentFunc (

agent,

"hello",

&retval,

2, /* Num Arguments */
5/

T);

printf ("Value of %d was returned.\n", retval);

/+ End the persistent agent =*/
MC_DeleteAgent (agent) ;

MC_End (agency) ;
return 0;

Program 17: A Mobile-C agency. (<MCPACKAGE>/demos/cspace—-agentspace_interface/
persistent_example/server.c)

The other method of executing the function is through the Mobile-C api function MC_CallAgentFunc()
. This method is seen in the example program, Program[I7}

45

S ./server
Please press ’'enter’ once the sample agent has arrived.
The sample persistent agent has now arrived.

Hello!!!

This text is being generated from within the ’"hello ()’ function!
I received arguments of value 50 51.

Value of 4 was returned.

$

Figure 9.1: Output from the binary server program.

Figure 0.1] shows the output when the binary file server compiled from Program [I7] was executed. The
string generated and the value returned from the function hello() were printed to the screen after the Enter
key was pressed once the mobile agent had arrived.

46

Chapter 10

Extend Mobile-C Functionality to Mobile
Agent Space

In order to allow mobile agent code to call user defined routines and access data sets defined in the binary
space, as well as control other mobile agents defined in the mobile agent space through the Mobile-C API
functions, the Mobile-C functionality has to be extended into the mobile agent space. We integrated Ch with
the Mobile-C library to provide access to some Mobile-C functionalities.

Figure [10.1 on page 49| shows how mobile agent code interfaces with the Mobile-C library. When the
function mc_function() is called in mobile agent code, Ch searches the corresponding interface function
MC _function_chdl() in the Mobile-C library, and passes arguments to it by calling the function. Subse-
quently, the interface function MC _function_chdl() invokes the target function MC_function(), and passes the
return value back to the mobile agent space [12].

The prototypes of Mobile-C functions used in the mobile agent space are declared in agent.c through
an Embedded Ch function, Ch_DeclareFunc(). The data type, MCAgent_t, used as a parameter or return
value by certain Mobile-C functions for the mobile agent space is also defined in agent.c by two Embedded
Ch functions, Ch_DeclareVar() and Ch_DeclareTypedef() [12]]. Table [B.5 on page 249| lists the currently
implemented functions for the mobile agent space. Two examples are used to demonstrate the applications
and features of the Mobile-C functionality in the mobile agent space.

10.1 Terminate Mobile Agent Execution from Mobile Agent Space

This example demonstrates how to send a mobile agent to terminate the execution of another currently
running mobile agent. These two mobile agents belong to independent mobile agent spaces.

The server program used in this example is the same as Program The client program is
the same as Program [I5 on page 43|except that it calls the function MC_SendAgentMigrationMessageFile()
twice to send out two mobile agents. The first mobile agent sent to the remote agency is test2.xml shown
in Program The execution of the mobile agent code will repeatedly print a string Hello
to the screen every second. The second mobile agent sent to the remote agency is fest3.xml shown in
Program The function mc_FindAgentByName() returns a variable of type MCAgent_t as a
handle to a mobile agent. The mobile agent code embedded in mobileagent2_ex3.xml finds a mobile agent
named mobagentl by the function mc_FindAgentByName() and terminates the execution of mobagentl by
the function mc_TerminateAgent() .

47

10.2 Invoke a Registered Service from Mobile Agent Space

This example demonstrates how to send a mobile agent to invoke a service provided by a persistent mobile
agent registered with the DF.

The server program used in this example is the same as Program The client program is
the same as Program |15 on page 43|except that it calls the function MC_SendAgentMigrationMessageFile()
three times to send out three mobile agents. The first mobile agent sent to the remote agency is shown in
Program The execution of the mobile agent code will register two services with the remote
DF through the function mc_RegisterService(). The two services are addition and subtraction which provide
addition and subtraction of two integers, respectively. These services also refer to the functions defined in
the mobile agent code. The function mc_RegisterService() takes three parameters. An MCAgent_t type
variable is the first parameter. A system variable of type MCAgent_t, mc_current_agent, is used as the first
parameter when services for the current mobile agent are registered, as illustrated in Program[20 on page 52}
The system variable mc_current_agent is declared in agent.c using the function Ch_DeclareVar() to hold
the current mobile agent. An array of pointer to char and an integer are the second and third parameters,
respectively. The array holds the name of the services whereas the integer denotes the number of the services
to be registered.

The second mobile agent is similar to the first and also registers two services, multiplication and modu-
lus, which provides multiplication and modulo operation of two integers. This mobile agent can be seen in
Program

The third mobile agent sent to the remote agency is shown in Program The function
mc_SearchForService() takes five parameters. The first parameter is the name of the service to be found.
The second parameter is the address of an array of ponter to char that holds the names of all the mobile
agents with the desired service. Likewise, the third parameter is the address of an array of pointer to char
that holds the desired service name associated with all the found mobile agents. The fourth parameter is
the address of a one-dimensional integer array that holds the IDs of all the mobile agents with the desired
service. The last parameter is the address of an integer denoting the number of mobile agents that have
been found. In this example, once the search for addition service is done, the first mobile agent with this
service will be returned by the function mc_FindAgentByID() with a parameter as the first element of array
agentIDs. In this example, the first found mobile agent is service_provider_I. The function addition()
defined in service_provider_1 will be called through the function mc_CallAgentFunc() to perform addition
of two integers. Since mc_CallAgentFunc() can only pass one argument to the invoked function, the address
of a data structure with two integer members is passed to addition() in this example. The return value of
addition() is assigned to the variable retval. The string Result of addition 44 + 45 is 89. will be printed to
the screen at the end.

48

C/C++ Script Space
(Mobile Agent Space)

Mobile Agent Code
-- Ch script

Mobile-C Function Call
mc_function() <

C/C++ Binary Space

Mobile-C

Target Function 1
J

MC function() «

(Interface Function 1

» MC function chdl{)«
(> MC_function_chdl() <

~_

Figure 10.1: Interface of mobile agent code with the Mobile-C library.

49

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
<DATA dim="0" name="no-return" >
</DATA>
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
#include <unistd.h>
int main ()
{
while (1) {
printf ("Hello\n");
/* Sleep for 1 second */
usleep(1000000);
}

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 18: A mobile agent which enters an infinite loop and does not terminate.
(<MCPACKAGE>/demos/cspace—agentspace_interface/persistent_example/test2.xml)

50

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 3</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
<DATA dim="0" name="no-return" >
</DATA>
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main ()
{
MCAgent_t tmp;
tmp = mc_FindAgentByName ("mobagentl") ;
printf ("Agent mobagentl is at address %x\n", tmp);
if (tmp == NULL) {
printf ("Agent not found. Terminating...\n");
return 0;
}
mc_TerminateAgent (tmp) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 19: This agent terminates the execution of the agent in Program [I§]
(<MCPACKAGE>/demos/cspace—agentspace_interface/persistent_example/test3.xml)

51

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">
<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>service_provider_1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASKS task="1" num="0">
<TASK num="0"complete="0" server="localhost:5050" persistent="1" name="no-return">
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>

int main () {
char x+*services;
int i;
services = malloc (sizeof (charx)*2);
for(i = 0; 1 < 2; 1i++) {
services[i] = malloc (40);
}
strcpy (services[0], "addition");
strcpy (services[1l], "subtraction");
printf ("Service provider 1 has arrived.\n");
printf ("I provide addition and subtraction service.\n");
mc_RegisterService (mc_current_agent, services, 2);
return 0;

int addition(int a, int b) {
printf ("Adding %d and %d...\n", a, b);
return a + b;

int subtraction(int a, int b) {
printf ("Subtracting %d - %d...\n", a, b);

return a - b;
}
11>
</AGENT_CODE>
</TASKS>

</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 20: Sample agent containing ’addition’ and ’subtraction’ services. Note that the vari-
able “mc_current_agent” is a special built-in variable described in Table [B.3 on page 247|
(<MCPACKAGE>/demos/agent_space_functionality/mc_df_service_test/
service_provider_1l.xml)

52

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">
<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>service_provider_2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5050" persistent="1" name="no-return">
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>

int main() {
char x*services;
int 1i;
services = malloc (sizeof (charx)*2);
for(i = 0; 1 < 2; 1i++) {
services[i] = malloc (40);
}
strcpy (services[0], "multiplication");
strcpy (services[1l], "modulus");
printf ("Service provider 2 has arrived.\n");
printf ("I provide multiplication and modulus service.\n");
mc_RegisterService (mc_current_agent, services, 2);
return 0;

int multiplication(int a, int b) {
printf ("Multiplying %d and %d...\n", a, b);
return a * b;

int modulus (int a, int b)
printf ("Modulo %d % %d...\n", a, b);
return a % b;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 21: Sample agent containing ’multiplication’ and ’modulus’ services. = Note that the
variable ‘“mc_current_agent” is a special built-in variable described in Table [B.3 on page 247]
(<MCPACKAGE>/demos/mc_df_service_test/service_provider_2.xml)

53

<?xml version="1.0"7?>

<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>

<MESSAGE message="MOBILE_AGENT">

<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="127.0.0.1:5050">
</TASK>

<AGENT_CODE>

<! [CDATA[

#include <stdio.h>
int main ()

{

MCAgent_t agent;

int retval;

/* Search Return Variables =*/
charxx agentNames;

charxx serviceNames;

int xagentIDs;

int numResults;

int a, b;

/* Search for addition service x/
printf ("\n\n\nSearching for addition service.\n");
mc_SearchForService (
"addition",
&agentNames,
&serviceNames,
&agentlIDs,
&numResults);
printf ("Done searching.\n");
if (numResults < 1) {
printf ("No agents with service ’addition’ found.\n");
exit (0);

/* Just get the first hit =/
printf ("Using agent %s for addition.\n", agentNames[0]);
agent = mc_FindAgentByID (agentIDs[0]);

a = 44;

b = 45;

mc_CallAgentFunc (agent, "addition", &retval, a, Db);

printf ("Result of addition %d + %d is %d.\n", a, b, retval);

Program 22: Sample agent that searches for

54

and invokes agent

(<MCPACKAGE>/demos/mc_df_service_test/testl.xml) (Part1)

services.

/* Now search for multiplication service x/
printf ("\n\n Searching for Multiplication service...\n");
mc_SearchForService (

"multiplication",

&agentNames,

&serviceNames,

&agentIDs,

&numResults);

if (numResults < 1) {
printf ("No agents with service ’'multiplication’ found.\n");
exit (0);

printf ("Using agent %s for multiplication.\n", agentNames[0]);
agent = mc_FindAgentByID (agentIDs[0]);

mc_CallAgentFunc (agent, "multiplication", &retval, a, b);

printf ("Result of multiplication %d * %d is %d.\n", a, b, retval);

/* Now lets try to deregister a service «*/
mc_DeregisterService (

agentIDs[0],

serviceNames [0]

)i

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 22: (Continued)

55

Chapter 11

Synchronization Support in the Mobile-C
library

In a Mobile-C agency, mobile agents are executed by independent AEEs. A user might also need to design
a multi-threaded application where a Mobile-C agency itself is one of the many threads that handle differ-
ent tasks. The Mobile-C library provides support for synchronization among mobile agents and threads.
The synchronization API functions are used to protect shared resources as well as provide a method of
deterministically timing the execution of mobile agents and threads.

The internal implementation consists of a linked list of Portable Operating System Interface for UNIX
(POSIX) compliant synchronization variables, namely, mutexes, condition variables, and semaphores. Each
node in the linked list is a synchronization variable which is assigned or given a unique identification number.
The API functions can be called from the binary or mobile agent space to initialize the synchronization
variables and access them by their unique identification numbers in the linked list.

A Mobile-C synchronization variable is an abstract variable, initialized by the function MC_Synclnit()
. Once it has been initialized, it may be used as a mutex, condition variable, or semaphore. No further
function calls are necessary to change a generic synchronization variable to one of the types. However, once
a synchronization variable is used as a mutex, condition variable, or semaphore, it should not be used again
as a different type. For instance, if calls to

MC_SyncInit (500);
MC_MutexLock (500) ;

are made, initializing a synchronization variable with ID “500”, and locking it as a mutex, it should not be
then used with any of the condition variable or semaphore functions.
The application of the Mobile-C synchronization mechanism is illustrated by the example below.

11.1 Synchronization in Mobile Agent Space

The Mobile-C library allows synrchonization among agents via mutexes, condition variables, and semaphores.
Each type of synchronization variable is used for different features. Perhaps the most common and basic of
these variables is the mutex.

The client program shown in Program [23 on the following page|starts a Mobile-C agency listening on
port 5050 and subsequently sends two mobile agents to the remote agency running on host localhost at port

5051. The mobile agents are shown in Program and Program These mobile

agents will use a mutex to guard an operation that may not be performed by two agents simultaneously.

56

#include <stdio.h>
#include <libmc.h>
#ifdef _WIN32
#include <windows.h>
fendif
#define WAIT_TIME 2
int main ()
{
MCAgency_t agency;
MCAgencyOptions_t options;
int local_port=5050;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (¢§options, MC_THREAD_CP); /x Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);

printf ("Sending sleep agent...\n");
/* Note: The third argument of the following function may also be a
valid IP address in the form of a string. i.e. 192.168.0.1 «/
MC_SendAgentFile(agency, "sleep.xml");
printf ("Sleeping for %d seconds.\n", WAIT_TIME);
#ifndef _WIN32
sleep (WAIT_TIME);

#else
Sleep (WAIT_TIME = 1000);
fendif
printf ("Sending wake-up agent...\n");

/+ Note: The third argument of the following function may also be a
valid IP address in the form of a string. i.e. 192.168.0.1 */

MC_SendAgentFile (agency, "wake.xml");

MC_End (agency) ;

return 0;

Program 23: A program used to send a mobile agent. (<MCPACKAGE>/demos/synchronization/
agent mutex_example/mc_client.c)

This example demonstrates the ability of a Mobile-C mutex to protect a resource that may be shared
between two agents. Any real or imaginary resource that should not be accessed simultaneously by more
than one entity at a time should be guarded by a mutex. The resource may be a shared variable, or something
more abstract such as control of a robot arm. If there is only one robot arm, then only one entity, an agent in
this case, should be able to control it at a time.

In our particular example, the tasks our agents are going to perform are imaginary. Each task is rep-
resented instead by the “sleep()” function and the printing of a message, which causes execution of that
particular agent to pause for a time, as if it were performing a task. For our example, we will intentionally
cause our agents to collide execution times to demonstrate that our mutex works. Examining our client
program, Program 23] we see that we set a two second interval between sending the agents. However, the
task that each agent tries to perform will be five seconds long. This means that the second agent will arrive
while the first agent is in the middle of performing its simulated task. The execution output will demonstrate
that the second agent will not begin its task until the first agent is finished.

Semaphores are also used to guard resources in which a limited number of entities may access at a time.
Since the behaviour and usage of semaphores are similar to that of a mutex, an example is not provided
here. Please see the demo in directory <MCPACKAGE>/demos/agent_semaphore_example/ for an

57

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>sleep_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main ()
{
int mutex_id;
printf ("Sleep agent has arrived.\n");
mutex_id = mc_SyncInit (55);

if (mutex_id != 55) {
printf ("Possible error. Aborting...\n");
exit (1);

}

printf ("This is agent 1.\n");

printf ("Agent 1: I am locking the mutex now.\n");

mc_MutexLock (mutex_id) ;

printf ("Agent 1: Mutex locked. Perform protected operations here\n");
printf ("Agent 1: Waiting for 5 seconds...\n");

sleep(5);

printf ("Agent 1: Unlocking mutex now...\n");

mc_MutexUnlock (mutex_id) ;

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 24: An agent which uses a mutex while accessing a shared resource.
(<MCPACKAGE>/demos/synchronization/agent_mutex_example/sleep.xml)

example.

Condition variables are also useful in multi-threaded applications in order for threads to sleep and wait
for a signal. Program illustrates an agent that will sleep on a condition variable immediately
after arriving at an agency. Program shows an agent that will send a signal to the condition
variable the first agent in Program [26]is waiting on, thereby causing the first agent to wake up and continue
execution.

58

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>wake_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main ()
{
int mutex_id;
mutex_id = 55;
printf ("Agent 2: Has arrived");
printf ("Agent 2: Attempting to lock the mutex...\n");
mc_MutexLock (mutex_id) ;
printf ("Agent 2: Mutex locked.\n");
printf ("Agent 2: Perform protected operations here.\n");
sleep(5);
mc_MutexUnlock (mutex_id) ;
printf ("Agent 2: Mutex Unlocked\n");
mc_SyncDelete (mutex_id);

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 25: An agent which uses a mutex while accessing a shared resource.
(<MCPACKAGE>/demos/synchronization/agent_mutex_example/wake.xml)

11.2 Synchronization Between Binary and Agent Spaces

The synchronization variables initialized using MC_Synclnit() are accessible in both agent space and bi-
nary space, enabling agents to synchronize with binary threads. Again, all three Mobile-C synchronization
variable types: mutexes, condition variables, and semaphores, may be used in both binary and agent space.

Referring the example server code in Program we show a piece of code where a binary
program containing a Mobile-C agency must perform a subroutine involving a shared resource, protecting it
with a mutex. The shared resource will be accessible from both the main() binary thread as well as any agents
which are residing in the agency. As such, the server code initializes and uses a mutex to protect the shared
resource. In our example agent shown in Program we see that this agent needs to access the

59

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>sleep_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>

#define SYNC_ID 55

int main ()

{
int cond_id;
printf ("Sleep agent has arrived.\n");
cond_id = mc_SyncInit (SYNC_ID);

if (cond_id != SYNC_ID) {
printf ("Possible error. Aborting...\n");
exit (1);

}

printf ("This is the sleep agent.\n");

printf ("I am going to sleep now...\n");

mc_CondWait (cond_id) ;

printf ("This is the sleep agent: I am awake now. Continuing...\n");
mc_SyncDelete (cond_id) ;

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 26: A sample agent which will immediately sleep on a condition variable after arriving at an
agency. (<MCPACKAGE>/demos/synchronization/agent_cond example/sleep.xml)

same shared resource, and so it must first lock the mutex before doing so. This example demonstrates that
the mutex will prevent both the agent and binary thread from accessing the resource simultaneously

Referring now to Program[30 on page 64]and Program 3T on page 63] we demonstrate the use of Mobile-

C condition variables to synchronize an agent with a binary thread. The binary space thread program shown
in Program [30] simply waits on a condition variable. The agent shown in Program [31] signals the binary
space thread with a call to mc_CondSignal(), causing the binary space thread to run once.

60

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>wake_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>

#define SYNC_ID 55
int main ()
{
int cond_id;
int err;
cond_id = SYNC_ID;
printf ("This is the wake agent.\n");
err = mc_CondSignal (cond_id);
if (err) {
printf ("Error signalling condition variable!\n");

}
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 27: A sample agent which will signal a condition variable after arriving at an agency.
(<MCPACKAGE>/demos/synchronization/agent_cond_example/wake.xml)

11.3 Mobile-C Execution with Multiple Agencies

Using the Mobile-C library, multiple agencies may be initialized within the same program. This is useful in
cases where the agencies may have different AEE configuration properties, privileges, etc. Ch is the chosen
AEE of Mobile-C. Functions such as MC_CopyAgent() and MC_AddAgent() become useful in such cases.

In the example shown in Program[32 on page 66 we demonstrate a program with two agencies, listening
on ports 5051 and 5052, respectively. In our simple example, the server simple duplicates every agent
arriving to the agency on port 5051 and adds a copy to the agency on port 5052.

Note that the MC_CopyAgent() function is necessary here because Mobile-C functions which retrieve
agents from agencies only retrieve references to the agents, not copies of the agents. The MC_CopyAgent()
function performs a deep copy on the agent structure so that it may be used in another agency. Also note

61

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
#define MUTEX_ID 55
int main ()
{
MCAgency_t agency;
MCAgencyOptions_t options;
int 1i;
int local_port=5051;

MC_InitializeAgencyOptions (&options);

/+x We want _all_ the threads on: EXCEPT, the command prompt thread =/
for (i = 0; i < MC_THREAD_ALL; i++) {
MC_SetThreadOn (&options, 1i);
}
MC_SetThreadOff (&options, MC_THREAD_CP);

agency = MC_Initialize(
local_port,
&options);

MC_SyncInit (agency, MUTEX_ID) ;
/+ Now, lets perform a simulated task which accesses a shared resource
*x 20 times. */
for(i = 0; 1 < 20; i++) {
printf ("C Space: Attempting to lock mutex...\n");
MC_MutexLock (agency, MUTEX_ID);
printf ("C Space: Mutex Locked. Performing task.\n");
#ifndef _WIN32
sleep(1l);
#else
Sleep (1000);
#endif
printf ("C Space: Unlocking Mutex...\n");
MC_MutexUnlock (agency, MUTEX_ID) ;
printf ("C Space: Mutex Unlocked.\n");

MC_SyncDelete (agency, MUTEX_ID);
MC_End (agency) ;
return 0;

Program 28: A sample program with an embedded Mobile-C
demonstrating the use of a Mobile-C mutex to protect a shared

agency
resource.

(<MCPACKAGE>/demos/synchronization/cspace mutex_example/mc_server.c)

that setting the copied agent’s status to “MC_WAIT_CH” ensures that it will execute again upon entering the

second agency.

62

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>sleep_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0"complete="0" server="localhost:5051">
<DATA dim="0" name="no-return" >
</DATA>
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main ()
{
int mutex_id;
int 1i;
printf ("This is agent 1.\n");
for(i = 0; 1 < 10; i++) {
printf ("Agent: Attempting to lock mutex...\n");
mc_MutexLock (55) ;
printf ("Agent: Mutex Locked. Performing protected operations...\n");
sleep(1l);
printf ("Agent: Attempting to unlock mutex...\n");
mc_MutexUnlock (55);
printf ("Agent: Mutex Unlocked.\n");

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 29: A sample Mobile-C agent which must perform
an action on a shared resource guarded by a Mobile-C mutex.
(<MCPACKAGE>/demos/synchronization/cspace mutex_example/agent .xml)

63

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else

#include <unistd.h>
#endif

#define COND_ID 55

int main ()
{
MCAgency_t agency;
MCAgencyOptions_t options;
int 1i;
int local_port = 5051;
MC_InitializeAgencyOptions (&options);
/+x We want _all_ the threads on: EXCEPT, the command prompt thread */
for (i = 0; i < MC_THREAD_ALL; i++) {
MC_SetThreadOn (&options, 1);
}
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =*/

agency = MC_Initialize(
local_port,
&options) ;

MC_SyncInit (agency, COND_ID);
/+ Let us wait on a condition variable. Every time an agent signals that
* variable, we will perform some task. x/
while (1) {
MC_CondWait (agency, COND_ID);
printf ("C space: I am awake! Performing some task.\n");
MC_CondReset (agency, COND_ID) ;

MC_MainLoop (agency) ;

return 0;

Program 30: An example server containing a thread which will run
once each time it is signalled by another thread or by an agent.
(<MCPACKAGE>/demos/synchronization/cspace_cond_example/mc_server.c)

64

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
#define COND_ID 55
int main ()
{
int i;
printf ("This is agent 1.\n");
for(i = 0; 1 < 5; i++) {
printf ("Agent: Perform some task here.\n");
sleep(2);
printf ("Agent: signal C space for followup action.\n");
mc_CondSignal (COND_ID) ;
sleep(1l);

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

Program 31: A sample agent which signals a condition
(<MCPACKAGE>/demos/synchronization/cspace_cond_example/agent .xml)

65

variable.

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
int main ()
{
MCAgency_t agencyl;
MCAgency_t agency?2;
MCAgencyOptions_t options;

int i;
int portl = 5051;
int port2 = 5052;

MCAgent_t agent;
MCAgent_t agent_copy;

MC_InitializeAgencyOptions (&options);

/+x We want _all_ the threads on: EXCEPT, the command prompt thread =*/
for (i = 0; i < MC_THREAD ALL; i++) {
MC_SetThreadOn (&options, 1i);
}
MC_SetThreadOff (soptions, MC_THREAD_CP); /+ Turn off command prompt =*/

agencyl = MC_Initialize(
portl,
&options);

agency2 = MC_Initialize(
port2,
&options);

while (1) |
agent = MC_WaitRetrieveAgent (agencyl);
MC_CopyAgent (&agent_copy, agent);
MC_SetAgentStatus (agent_copy, MC_WAIT_CH);
MC_AddAgent (agency?2, agent_copy);
MC_ResetSignal (agencyl);

return 0;

Program 32: An example program containing two Mobile-C agencies. The pro-
gram copies agents arriving at the agency on port 5051 to the agency at port
5052. (<MCPACKAGE>/demos/miscellaneous/multiple_agency_example/mc_server.c)

66

Chapter 12

Mobile-C Security Module

The Mobile-C package (version 1.10.@ @) includes a security module. This security module is intended to
provide secure migration process of mobile agents and ACL messages from one agency to another. Before
the migration process, both agencies must authenticate each other successfully. After that, an encrypted
mobile agent is transferred and its integrity is verified at the receiver side. The security module helps guard
against man-in-the-middle attacks and eavesdropping, and provides a strong authentication of the agencies
involved in the migration process.

12.1 Security Module Architecture and Overview

The Mobile-C security module is inspired by the SSH protocol. When a security-enabled agency attempts
to contact another agency for the migration of a mobile agent or an ACL message, both agencies must
authenticate each other before the migration process. A successful authentication creates a trust between the
two agencies.

Each security-enabled agency must contain a known_host file and a pair of private (rsa_priv) and public
(rsa_pub) key files. These files are provided to each agency by the administrator at startup time. The
known_host file contains the host name and public key of each agency in the network, as an identifier. By
default, each agency trusts all the agencies that are listed in the known_host file. The rsa_priv and rsa_pub
key files contains the private and public key of the agency.

12.2 Enabling the Security Module

The configuration options need to be changed in order for the module to be built and used are below.

12.2.1 Enabling the Security Module in Unix

In a Unix environment, a configuration option needs to be stated during the configuration process. The new
configuration step will be the command

./configure —--enable-security
instead of the old

./configure

67

12.2.2 Enabling the Security Module in Windows

For Windows, below is the line that needs to be comment out in the file “[MobileC_HOME]/src/winconfig.h”.

#define MC_SECURITY 1

12.2.3 Further Instructions

If the private key file is used in encrypted form then option needs to be turned on. The following C code
snippet will start a security-enabled agency listening on port 5050.

MCAgency_t agency;

MC_AgencyOptions_t options;
MC_TInitializeAgencyOptions (&options);
strcpy (options.passphrase, "alphal234");
agency = MC_Initialize (5050, &options);

See more about the MC_AgencyOptions_t type at the description of the MC_Initialize() function in
Appendix A on page

12.3 Preparation to Run Security Enabled Agency

Before running a Mobile-C agency with the security option, the following files are required.
1. A known host file (known_host)
2. A pair for public (rsa_pub) and private (rsa_priv) key files
are required to be created. These are known_host file and private key file. A small utility source program
[MobileC—-SRC_HOME] /src/util/mc_keygen.c

is provided with the Mobile-C library to create a pair of public and private key files for an agency. When
you make the Mobile-C library the executable for this source program can be found in

[Mobile—-C_HOME] /bin/mc_keygen

It is required to create a separate pair of public and private key file for each agency. That means if there are
n agencies in a network then » number of public and private key file pairs are required. The private key files
can be created in plaintext or encrypted form. Details can be found in section 9.3.1. The known host file
needs to be built manually after creating public and private key files.

12.3.1 Generating Key Files

A utility program mc_genkey ([MobileC-Home]/bin/mc_genkey) is used to create public and private key
files. This utility program can create a private key in plain text or cipher text. To generate the key files with
private key in plain text, you can execute the mc_genkey as

68

$./mc_genkey -rsakeys -pt

Seeding the random number generator
Generating the RSA key [1024-bit]
Exporting public key in rsa_pub
Exporting the private key in rsa_priv
Done.

Key generated.

where -pt means to generate private key in plain text. Similarly,

$./mc_genkey -rsakeys -en

Enter Passphrase (A-Z, a-z, 0-9)to encrypt privatekey file

(remember your passphrase otherwise encrypted private key file is useless)
> alphal234

Seeding the random number generator
Generating the RSA key [1024-bit]
Exporting public key in rsa_pub
Exporting the private key in rsa_priv
encrypted.

done.

keys generated.

would generate the private key in encrypted form, where en stands for encryption. Here we a passphrase
(alphal234)is provided to encrypt the private key file. With this option it prompts for the passphrase that is
used to encrypt the rsa private key. Here we entered a passphrase (alphal234) to encrypt the private key file.
You can enter a string maximum upto 32 bytes in length consisting of small or capital alphabet and/or 1-9
digits. The same passphrase is required by the Mobile-C agency to decrypt the private key file. With both
options, it generates the public key file in plain text. The output file names are rsa_pub for public key and
rsa_priv for private key.

12.3.2 Known Host File

After creating the key files for all the agencies in a network the known_host file needs to be created manully.
The sample known_host file is shown in Figure [12.1] To proceed, create a file using a text editor with name
known_host. Type the name of the first agency (as shown Host Name in Figure and copy its public
key from rsa_pub file. Insert the record separation character # and type the same for second agency and
continue. Make sure that the name for the known_host file is “known_host”. After creating the known_host
file, copy the known_host file to each agency and the rsa_priv file on the respective agencies (the same
directory from where you will run the Mobile-C agency). Public and private key files are always created as
a pair this means that any text encrypted with the public key can only be decrypted with the corresponding
(paired) private key. Therefore, please make sure that the copied private key (rsa_priv) to an agency must
correspond to the public key that is mentioned infront of the name of this agency in known_host file.

12.4 Examples — Mobile-C Security
A Mobile-C security enable agency can be executed with encypted or plaintext private key. When you

execute a Mobile-C agency it will look for private key file named rsa_priv in the current directory. If
the private key is encrypted and the passphrase is not provided in Mobile-C agency C program then it

69

Public
key

8 1:bird1.engr.ucdavis.edu - bird1* - 55'1 Secure Shell o [m]
Fle Edit Wiew Window Help |

st |H BRIBZ 2R/ Alan e
Name &) Quick Connect] Profiles |./

\'ie 12.engr.ucdavis.edu Ny= BCF3EB40794EACSZ 658E0E74143E1FBCOB0TVESFOE3I ASCZ ADT7 ﬂ
TE11DCEZ7CED4SA971E182472ZC3FCFBS2Z0E456 4663 1EQCD76ATF3I8A437TE4SD544CEFEF17CS

Record SESCASS13DFDDETSBEAES117D0O0F342F30C459459F 132 BAC4G37DCEOG6SDEODTED 17EDPDOEET
Separator G0EEEE6OSEOAFS1CCES3Z509B7ESZ055DE3E3 1EADSSCIE5FZ40A1B983223

\ E = 010001
L

birdl.engr.ucdavis.edu N = DAOEDE304ABEZSESZDEOSY77OEES4FEC419ACTADF409769
G6C1DBEBAZG6ECACTECTI2Z632CE6F76FE4ECZ3CD38BEZ141D66F636D084ES7654488037COF077
FOF4SAFSAFCOV4FEA4COE 7362 7C3DAF 190B292B0CSEZ7O32DEEQOFG501EAYBASADATIOBIESE
ZZOFS8E46DDD4CTC49CEF7FCFE431430E67E7048A5F42959479FE1F 14DFOS59

E = 010001
"known_host" 10L, 587C written 6,1 Top j
Connected to bird1.engr.ucdavis.edu |SSHZ - aes128-cbe - hmac-mdS - none | 74x13 l_ m l_ ML

Figure 12.1: A sample known host file.

will prompt for the passphrase. <MCPACKAGE>/demos/ contains two demos (hello_world_secure and
multi_task_example_secure) that uses private key in plain text.

Please note that for hello_world_secure demo, the private and public key pair is same for client and
server, that is both the client and server program run on the same machine (iel2.engr.ucdavis.edu). To run
the demo in your machine, you to write the name of your machine in known_host file and the mobile agent
file (testl.xml)

To run client and server agencies on the two different machines, you need to create a pair of public and
private keys (see section 9.3.1) and that is for the second machine. The first agency can use the already
created key files that are provided with demos. After creating the key files, edit the known_host file by
including the name of other machine and newly created public key from file (rsa_priv), for details see
section 9.3.2. Also copy the newly generated private key file (rsa_priv) and updated known_host file on the
other machine in the same directory from where Mobile-C agency will be executed. Now start the server
program and then the client program.

Please note that when you build the demos, the executable files (client and server) for demo hello_world
_secure are in directories hello_world_secure/client and hello_world_ secure/server respectively. Similarly,
the executable files (client, serverl and server2) for demo multi_task_example_secure are in directories
multi_task_e xample_secure/client, multi_task_example_secure/serverl and multi_task_example_secure/server2
respectively.

Each agency uses a separate known_host, public(rsa_pub) and private key rsa_priv pair files.

The programs [33| and [34] show hello_world_secure server and client code respectively. Please note that
the MC_AgencyOptions_t is required only if the private key file is encrypted. Since both programs use the
private key file (rsa_priv) in plaintext so MC_AgencyOptions_t is NULL in MC_Initialize function.

If you generate the private key file (rsa_priv) in encrypted form (see section 9.3.1) then the Mobile-C
agency requires the same passphrase to decrypt its private key that you have entered to encrypted this file. In
this case MC_AgencyOptions_t should not be NULL. It is a possible that passphrase would not be privided in
the code. That is, this code can be run if strepy(options.passphrase, ”xxxx”); is commented out. In this case,
if the private key is encyrpted the Mobile-C agency would prompt to enter passphrase at startup otherwise
not.

70

#include <stdio.h>
#include <libmc.h>
#ifdef _WIN32
#include <windows.h>
#endif

int main ()
{
MCAgency_t agency;
int local_port = 5126;
//unsigned char passphrase[] = "alphal234";
MCAgencyOptions_t options;

MC_InitializeAgencyOptions (&options);
strcpy (options.passphrase, "alphal234");

agency = MC_Initialize(local_port, &options);
MC_MainLoop (agency) ;

MC_End (agency) ;
return 0;

Program 33: A sample server side code
mos/mobilec_security/hello_world_secure/server.c)

71

for

security

enable

agency

(../de-

#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<libmc.h>
<string.h>

int main ()

{

MCAgency_t agency;

MCAgencyOptions_t options;
int local_port=5125;
int remote_port =

char remote_host][]

5126;
= "localhost";

MC_InitializeAgencyOptions (&options);
strcpy (options.passphrase, "alphal234");

MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =*/
= MC_Initialize(local_port,
The third argument of the following function may also be a
valid IP address in the form of a string.

agency

/* Note:

printf ("Sending agent...");
MC_SendAgentFile (agency, "testl.xml");
printf (" Done.\n");

MC_End (agency) ;

exit (0)

Program

’

34:

A sample client side

mos/mobilec_security/hello_world_secure/client.c)

72

&options);

code

i.e.

192.168.0.1 «/

for

security

enable

agency

(../de-

Chapter 13

Communication With Other FIPA
Compliant Agent Systems

This section provides some brief examples regarding communication between Mobile-C and other FIPA
compliant agent systems.
13.0.1 Example: Receiving a message from a JADE agent

The following section contains details regarding an example where a Mobile-C agent receives a message
from a JADE agent. This example is included to provide a brief overview of how FIPA ACL communication
operates between Mobile-C agencies and JADE agencies.

Start a Mobile-C Agency

The first step in the example is to start a Mobile-C agency and a suitable agent to wait for a message.
An example agency which performs these tasks may be found in the directory <MCPACKAGE>/demos/
jade_to_mc_example/. To start the agency, simply go to the directory and execute the server with the
command

./server

The server will start and load the sample agent named “mobagent]” in one step, which should produce the
following output (or similar):

Mobile—-C Started

MobileC > This is mobagentl from the agency at port 5050.
Now, I am going to wait until I receive a message. Waiting...

Create a JADE container

The next step is to start a JADE agency. Instructions on how to obtain and install JADE may be found at the
website <http://jade.tilab.com> . Once JADE in installed, use the command

java Jjade.Boot -gui

to start a JADE container. Note that the command may vary across systems depending on your java distri-
bution and system setup. This command should produce a window similar to the following:

73

File Actions Tools Remote Platforms Help

BIEICICIE IR |'E||@ Belles dod

s EAgentPlatforms narme Ses state OWwner
¢ 00 "boxzor 1099/ JADE" [rame ESSTATE |OWNER
¢ Bl Main-Container :
B RMA@boxzor: 1099/ JADE
@ ams@boxzor1099/JADE
B df@boxzor 1099/ |ADE

Start a JADE dummy agent

The next step is to start a “dummy” agent by clicking on the button indicated by the large arrow in the
previous figure. This should produce a second window which should resemble the following image.

General Current message Queued message
Hed 8

fACLMessage [Envelope |

BRI

Sender: dan@hoxzor 1093/ |ADE

Receivers: ‘ ‘

Reply-to: ‘ ‘

Communicative ... |accept—proposal |v|
Content:

< Il [D]
Language: [|

Encoding: |
Ontology: [|

Frotocol: Null |v|

Conversation-id: |
In-reply-to: [|
Reply-with: [|

Reply-by: Set

User Properties: ‘

Send a message to Mobile-C

There are several fields in this empty ACL message that need to be set before the message will be suc-
cessfully passed to our Mobile-C agent. The first field to fill out is the Receivers, which indicates the
recipients for our message. We wish for our Mobile-C agent “mobagent]” to be our sole recipient. Add
“mobagent1” by right-clicking on the Receivers textbox and selecting the Add option. Fill out the box
as shown in the following image:

74

NAME |:||mc|bagent1

Addresses
http://Tocalhost:5050/acc
Resolvers
Properties

| OK | Cancel

After setting the receiver, the rest of the message may be set to whatever is desired. For this example,
our sample message may be seen on the following image.

General Current message Queued message
€ "] L]
NEIEEIEEE

fACL Envelope |

B > & X o]

Sender: da0@hoxzor: 1099, JADE

Receivers:

mobagentl ‘

Reply-to: ‘ ‘

Communicative ... |accem—proposal |v|

Content:
Hello mabagentl. This is sample cantent.

<] i [1|
Language: [|
Encoding: |

Ontology: [|

Protocol: Null |v|

Conversation-id: |
In-reply-to: [|
Reply-with: [|

Reply- by: Set

User Properties: ‘

Once your desired message parameters are in place, click on the “Send Message” button indicated by
the arrow in the previous figure. The message will be sent to the agent waiting at the Mobile-C agency that
was previously started. The agent should receive the message and produce the following output:

mobagentl Got a message!
Message is from daORboxzor:1099/JADE
The content is Hello mobagentl. This is sample content.

This indicates that mobagent 1 has successfully received the message from JADE.

75

13.0.2 Example: Sending a message from Mobile-C to JADE

This example illustrates a Mobile-C agent sending an ACL message to a JADE agent. The example will be
presented in a step by step fashion and all files may be found in the directory <MCPACKAGE>/demos/mc_to_jade_examp:

Start a JADE container with a “PingAgent” agent

The first step is to start a JADE container with a responsive agent. In this example, we will use a demo “Pin-
gAgent” agent which is provided with JADE. The agent source code may be found in the JADE subdirectory
jade/src/examples/PingAgent /PingAgent . java . After installing JADE, run the command

java jade.Boot pingme:examples.PingAgent.PingAgent

from the jade/src/ directory to start a JADE main container and invoke an agent of type “PingAgent”
named “pingme”. The “PingAgent” agent contains a behaviour which receives messages and replies with
a standard reply message. The “PingAgent” expects incoming messages to have a performative of “query-
ref”, and for the content field to contain the text “ping”.

Start a Mobile-C agency with a sender agent

A Mobile-C agency and agent for use in the example has already been created and reside in the directory
<MCPACKAGE>/demos/mc_to_jade_example/ . After compiling Mobile-C and the Mobile-C demos,
simply go to the directory and run the ’client’ executable.

./client

The executable will automatically start a Mobile-C agency and load an agent named “mobagentl”. The
agent is programmed to send an ACL message to “pingme” at the local JADE container and wait for a
response message. Upon receiving the response, the agent will print the contents of the response message.
The Mobile-C agent output should look something like

Mobile-C Started

Sending agent to self...

Done.

mobagent?2 Creating new ACL message...

mobagent?2 sending ACL message...

Received a message from pingme@boxzor:1099/JADE.
Content is 'alive’.

76

Bibliography

[1] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing: Design and
Analysis of Algorithms. Reading, MA: Addison-Wesley, 1994.

[2] U. Manber, Introduction to Algorithmns - A Creative Approach. Reading, MA: Addison-Wesley, 1989.

[3] J. L. Adler and V. J. Blue, “A Cooperative Multi-Agent Transportation Management and Route Guid-
ance System,” Research Part C - Emerging Technologies, Vol. 10, No. 5-6, pp. 433454, 2002.

[4] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code Mobility,” IEEE Transactions on Soft-
ware Engineering, Vol. 24, No. 5, pp. 342-361, 1998.

[5] B. Chen, “Runtime Support for Code Mobility in Distributed Systems.” Department of Mechanical
and Aeronautical Engineering, University of California, Davis, Ph.D. dissertation, 2005.

[6] B. Chen and H. H. Cheng, “A Run-Time Support Environment for Mobile Agents,” in Proc. of
ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, No.
DETC2005-85389, Long Beach, California, 2005.

[7] B. Chen, H. H. Cheng, and J. Palen, “Mobile-C: a Mobile Agent Platform for Mobile C/C++ Agents,”
Software-Practice & Experience, Vol. 36, No. 15, pp. 1711-1733, December 2006.

[8] Mobile-C: A Multi-Agent Platform for Mobile C/C++ Code, http://www.mobilec.org.

[9] H. H. Cheng, “Scientific Computing in the Ch Programming Language,” Scientific Programming,
Vol. 2, No. 3, pp. 49-75, Fall 1993.

[10] ——, “Ch: A C/C++ Interpreter for Script Computing,” C/C++ User’s Journal, Vol. 24, No. 1, pp.
6-12, Jan. 2006.

[11] Ch — an Embeddable C/C++ Interpreter, http://www.softintegration.com.

[12] Embedded Ch, SoftIntegration, Inc., http://www.softintegration.com/products/sdk/embedded_ch/.

77

Appendix A

Mobile-C API in the C/C++ Binary Space

The header file libmc.h defines all the data types, macros and function prototypes for the Mobile-C library.
The header file is used in the C/C++ binary space.

Table A.1: Data types defined in libmc.h.

Data Type Description

MCAgency_t A handle containing information of an agency.

MCAgent_t A handle containing information of a mobile agent.
MCAgencyOptions_t A structure containing information about which thread(s) to be activated

and the default agent status specified by a user.

The header file fipa_acl.h contains datatype and macros related to FIPA ACL messaging, as described
in Chapter[7] This header file may be used in both C/C++ binary space, as well as agent space.

Table A.2: Data types defined in fipa_acl.h.

Data Type Description

fipa_acl_message_t A structure containing a FIPA ACL message.

78

Table A.3: Macros defined in libme.h.

Macro

Description

enum MC_ThreadIndex_e

MC_THREAD_AI
MC_THREAD_AM
MC_THREAD_CL
MC_THREAD_MR
MC_THREAD_MS
MC_THREAD_CP
MC_THREAD_ALL

Identifier for agent initalizing thread.
Identifier for agent managing thread.
Identifier for connection listening thread.
Identifier for message receiving thread.
Identifier for message sending thread.
Identifier for command prompt thread.
Identifier for all threads.

enum MC_Signal e

MC_RECV_CONNECTION
MC_RECV_MESSAGE
MC_RECV_AGENT
MC_RECV_RETURN

MC_EXEC_AGENT
MC_ALL_SIGNALS

Signal activated after an agency accepts a connection.

Signal activated after an agency receives an ACL message.

Signal activated after an agency receives a mobile agent.

Signal activated after an agency receives return data from a completed
mobile agent.

Signal activated after a mobile agent is executed.

Signal activated after any of the above four events occurs.

enum MC_AgentType_e

MC_REMOTE _AGENT Identifier for a remote mobile agent.
MC_LOCAL_AGENT Identifier for a local mobile agent.
MC_RETURN_AGENT Identifier for a return mobile agent.

enum MC_AgentStatus_e

MC_WAIT_CH Value indicating a mobile agent is waiting to be executed.

MC_WAIT_MESSGSEND

MC_AGENT_ACTIVE
MC_AGENT _NEUTRAL
MC_AGENT_SUSPENDED
MC_WAIT_FINISHED

Value indicating a mobile agent is waiting to be exported to another
agency.

Value indicating a mobile agent is being executed.

Value indicating a mobile agent is waiting for an unspecified reason.
Value indicating a mobile agent is being suspended.

Value indicating a mobile agent has been executed and is waiting to be
removed.

79

Table A.4: Macros defined in fipa_acl.h. Detailed documentation for the FIPA performatives and protocols
may be found in the FIPA specifications at http://www.fipa.org.

Macro

Description

fipa_performative_e

FIPA_ACCEPT_PROPOSAL
FIPA_AGREE
FIPA_CANCEL
FIPA_CALL_FOR_PROPOSAL
FIPA_CONFIRM
FIPA_DISCONFIRM

FIPA FAILURE
FIPA_INFORM
FIPA_INFORM_IF
FIPA_INFORM_REF
FIPA_NOT_UNDERSTOOD
FIPA_ PROPOGATE
FIPA_PROPOSE

FIPA PROXY
FIPA_QUERY_IF
FIPA_QUERY _REF
FIPA_REFUSE
FIPA_REJECT _PROPOSAL
FIPA_REQUEST
FIPA_REQUEST _WHEN
FIPA_REQUEST _WHENEVER
FIPA _SUBSCRIBE

The accept—proposal performative.
The agree performative.

The cancel performative.

The call-for-proposal performative.
The confirm performative.

The disconfirm performative.

The failure performative.

The inform performative.

The inform-1f performative.

The inform-ref performative.

The not—understood performative.
The propogate performative.

The propose performative.

The proxy performative.

The query-if performative.

The query-ref performative.

The refuse performative.

The reject-proposal performative.
The request performative.

The request-when performative.

The request-whenever performative.
The subscribe performative.

enum fipa_protocol_e

FIPA PROTOCOL_REQUEST
FIPA_PROTOCOL_QUERY

FIPA PROTOCOL_REQUEST _WHEN
FIPA_PROTOCOL_CONTRACT_NET

FIPA_ PROTOCOL_ITERATED _CONTRACT NET

FIPA_PROTOCOL_ENGLISH_AUCTION
FIPA_PROTOCOL_DUTCH_AUCTION
FIPA_PROTOCOL_BROKERING

FIPA_ PROTOCOL_RECRUITING
FIPA_PROTOCOL_SUBSCRIBE

FIPA_ PROTOCOL_PROPOSE
FIPA_PROTOCOL_END

The FIPA request protocol.

The FIPA query protocol.

The FIPA request-when protocol.
The FIPA contract—-net protocol.
The FIPA iterated-contract-net
protocol.

The FIPA english-auction protocol.
The FIPA dutch-auction protocol.
The FIPA brokering protocol.

The FIPA recruiting protocol.

The FIPA subscribe protocol.

The FIPA propose protocol.

The FIPA end protocol.

80

Table A.5: Functions in the C/C++ binary space.

Function Description
MC_AclAddReceiver() Add a receiver to an ACL message.
MC_AclAddReplyTo()c.co.... Add a reply-to address to an ACL message.
MC_AclGetContent() Get the content of an ACL message.
MC_AclGetConversationID() Get the conversation id from an ACL message.
MC_AclGetPerformative() Get the performative of an ACL message.
MC_AclGetProtocol() Get the protocol from an ACL message.
MC_AclGetSender() Get the sender of an ACL message.
MCACINeW() ..o Allocate a new FIPA ACL message.
MCACIPOSt()coviiiiiiiii i Post a FIPA ACL message to an agent’s mailbox.
MC_AclReply()ccooiiii Allocate a new FIPA ACL message automatically
addressed to the sender of a previous message.
MC_AclRetrieve()l Retrieve an ACL message from an agent’s mail-
box.
MC_AclSetContent() Set the content of an ACL message.
MC_AclSetConversationID() Set the conversation id of an ACL message.
MC_AclSetPerformative() Set the performative of an ACL message.
MC_AclSetProtocol() Set the protocol of an ACL message.
MC_AclSetSender() Set the sender of an ACL message.
MC_AclWaitRetrieve() Wait for a message to arrive at an agent’s mailbox.
MC_AgentAddTask() Add a task to an agent based off of C source code.
MC_AgentAddTaskFromFile() Add a task to an agent based off of a C source code
file.
MC_AgentAttachFile() Attach a file to the agent’s current task.
MC_AgentListFiles() List files attached to an agent’s task.
MC_AgentProcessingBegin() Call this function before performing multiple ac-
tions on agents within an agency.
MC_AgentProcessingEnd() Call this function to resume nor-

mal agency functions after calling
MC_AgentProcessingBegin ().

MC_AgentRetrieveFile() Retrieve and save an agent’s attached file onto the
filesystem.

MC_AgentReturnArrayDim() Get the dimension of an array returned by an
agent.

MC_AgentReturnArrayExtent() Get the extent of a dimension of an array returned
by an agent.

MC_AgentReturnArrayNum() Get the number of elements of an array returned
by an agent.

MC_AgentReturnDataGetSymbolAddr() Get a pointer to an array returned by an agent.

MC_AgentReturnDataSize() Get the size of a single element of the array.

MC_AgentReturnDataType() Get the type of the array.

MC_AgentReturnlsArray() Determine if the returned variable is an array.

MC_AddAgent()c.coiiiiiiienn. Add a mobile agent into an agency.

MC_AddAgentInitCallback() Add an agent initialization callback function into
an agency.

MC_AddStationaryAgent() Add a mobile agent into an agency.

MCBarrier() ... Block until all agents in an agency have called this
function.

MC BarrierDelete() 81 Delete a Mobile-C barrier.

MCBarrierInit() Initialize a Mobile-C barrier.

MC_CallAgentFunc() Call a function defined in an agent.

MC_CallAgentFuncV() Call a function defined in an agent.

Table A.5: Functions in the

C/C++ binary space (contd.).

Function

Description

MC_CallAgentFuncVar()
MC_ChlInitializeOptions()

MC_ComposeAgent()
MC_ComposeAgentS()

MC_ComposeAgentWithWorkgroup()

MC_ComposeAgentFromFile()

MC_ComposeAgentFromFileS()

MC_ComposeAgentFromFileWithWorkgroup()

MC_CondBroadcast()
MC_CondReset()ccovviiiinnii...
MC_CondSignal()

MC_CondWait()

MC_CopyAgent()

MC DeleteAgent()
MC DeregisterService()
MC_End()
MC_FindAgentByID()
MC _FindAgentByName()
MC_GetAgentArrivalTime()
MC_GetAgentExecEngine()

MC_GetAgentID()
MC_GetAgentName()
MC_GetAgentNumTasks()

MC_GetAgentReturnData()
MC_GetAgentStatus()
MC_GetAgentType()
MC_GetAgentXMLString()

MC_GetAgents()
MC _GetAllAgents()
MC _HaltAgency()
MC Initialize()

MC InitializeAgencyOptions()
MC _LoadAgentFromFile()

Call a function defined in an agent.

Set the initialization options for a Ch to be used as
one AEE in an agency.

Compose an agent from program source code.
[Deprecated] Compose an agent from program
source code with a workgroup code.

Compose an agent from program source code with
a workgroup code.

Compose an agent from a program source code
file.

[Deprecated] Compose an agent from a program
source code file with a workgroup code.
Compose an agent from a program source code file
with a workgroup code.

Wake up all agents/threads waiting on a condition
variable.

Reset a Mobile-C condition variable.

Signal another agent that is waiting on a condition
variable.

Cause the calling agent or thread to wait on a
Mobile-C condition variable with the ID specified
by the argument.

Perform a deep copy to copy an agent.

Stop and remove an agent from an agency.
Deregister a service with the Directory Facilitator.
Terminate a Mobile-C agency.

Find a mobile agent by its ID number in an agency.
Find a mobile agent by its name in an agency.

Get the time when an agent arrives an agency.
Get the AEE associated with a mobile agent in an
agency.

Get the ID of an agent.

Get the name of an agent.

Get the number of tasks a mobile agent has.
[Deprecated] Get the return data of a mobile agent.
Get the status of a mobile agent in an agency.

Get the type of a mobile agent.

Retrieve a mobile agent message in XML format
as a character string.

Obtain a filtered list of agents in an agency.
Obtain all the agents in an agency.

Halt an agency’s operation.

Start a Mobile-C agency and return a handle of the
launched agency.

Initialize Mobile-C options.

Load an agent from an XML file into a local
agency.

Y4

Table A.5: Functions in the C/C++ binary space (contd.).

Function Description

MC MainLoop() Cause the calling thread to wait indefinitely on an agency.

MC _MigrateAgent() Migrate an agent.

MC MutexLock() Lock a previously initialized Mobile-C synchronization vari-
able as a mutex.

MC_MutexUnlock() Unlock a locked Mobile-C synchronization variable.

MC PrintAgentCode() Print a mobile agent code for inspection.

MC_QueueXX[Un]lock() Lock/Unlock a Mobile-C data queue for reading or writing.

MC _RegisterService() Register a new service with the Directory Facilitator.

MC ResetSignal() Reset the Mobile-C signalling system.

MC_ResumeAgency() Resume an agency’s operation.

MC _RetrieveAgent() Retrieve the first neutral mobile agent from a mobile agent list.

MC _RetrieveAgentCode() Retrieve a mobile agent code in the form of a character string.

MC_SearchForService() Search the Directory Facilitator for a service.

MC_SemaphorePost() Unlock one resource from a Mobile-C semaphore.

MC_SemaphoreWait() Allocate one resource from a Mobile-C synchronization
semaphore variable.

MC_SendAgent() Send an ACL mobile agent message to a remote agency.

MC_SendAgentFile() Send an ACL mobile agent message saved as a file to a remote
agency.

MC_SendAgentMigrationMessage() . [Deprecated] Send an ACL mobile agent message to a remote
agency.

MC _SendAgentMigrationMessageFile() [Deprecated] Send an ACL mobile agent message saved as a
file to a remote agency.

MC_SendSteerCommand() Send a command to control a steerable binary space function.

MC_SetAgentStatus() Set the status of a mobile agent in an agency.

MC _SetDefaultAgentStatus() Assign a user defined default status to all incoming mobile
agents.

MC _SetThreadOff() Deactivate a thread in an agency.

MC SetThreadOn() Activate a thread in an agency.

MCSteer()ovvvieieiinn. Set up a steerable binary space function.

MC_SteerControl() Retrieve a steering command from the mobile agent space.

MC SyncDelete() Delete a previously initialized synchronization variable.

MCSyncInit() Initialize a new synchronization variable.

MC _TerminateAgent() Terminate the execution of a mobile agent in an agency.

MC_WaitAgent() Cause the calling thread to wait until a mobile agent is received.

MC_WaitRetrieveAgent() Block the calling thread until a mobile agent arrives, and return
the mobile agent instead of executing it.

MC_WaitSignal() Block until one of the signals in the second argument is sig-
nalled.

83

MC_AclGetProtocol()

Synopsis
#include <libmc.h>
enum fipa_protocol_e MC_AclGetProtocol(fipa_acl_message_t* acl);

Purpose
Get the protocol of an ACL message.

Return Value
Retuns a valid FIPA Protocol enumeration on success or -1 on failure.

Parameters
acl An initialized ACL message.

Description
This function is used to get the FIPA ACL protocol from an ACL message. The protocol may be any valid
FIPA protocol listed in the table below. The protocol field is not required to be set for a valid ACL message.

Enumerated Value FIPA Protocol

FIPA PROTOCOL_REQUEST FIPA request protocol.
FIPA_PROTOCOL_QUERY FIPA query protocol.

FIPA PROTOCOL_REQUEST WHEN FIPA request—when protocol.
FIPA_ PROTOCOL_CONTRACT_NET FIPA contract-net protocol.
FIPA_PROTOCOL_ITERATED_CONTRACT.NET FIPA iterated-contract-net protocol.
FIPA_PROTOCOL_ENGLISH_AUCTION FIPA english-auction protocol.
FIPA_PROTOCOL_DUTCH_AUCTION FIPA dutch-auction protocol.
FIPA_PROTOCOL_BROKERING FIPA brokering protocol.
FIPA_PROTOCOL_RECRUITING FIPA recruiting protocol.

FIPA PROTOCOL_SUBSCRIBE FIPA subscribe protocol.
FIPA_PROTOCOL_PROPOSE FIPA propose protocol.

Please refer to the FIPA protocol specifications at http://www.fipa.org for more details about each
of these protocols.

See Also

MC_AclSetSender (), MC_AclAddReceiver (), MC_AclAddReplyTo(),
MC_AclSetContent ()

84

MC_AclAddReceiver()

Synopsis
#include <libmc.h>
int MC_AclAddReceiver(fipa_acl_message_t* acl, const char* name, const char* address);

Purpose
Add a receiver to the ACL message.

Return Value

Returns 0 on success or non-zero on failure.

Parameters
acl An initialized ACL message.
name Sets the name of the receiver.
address Sets the address of the receiver.

Description

This function is used to add a receiver to an ACL message. This function may be called multiple times on an
ACL message. each time this function is called, a new receiver is appended to the list of intended receivers
for the ACL message.

Example

<!-— File: fipa_test/test2.xml -->
<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<1 [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
fendif

#include <math.h>
#include <fipa_acl.h>
int main ()

{

85

fipa_acl_message_t* message;
char *name, =*address;

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name) ;

message = mc_AclNew () ;

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;

mc_AclSetConversationID (message, "cnl");
mc_AclSetContent (message, "Content from mobagent2");
printf ("%$s: sending ACL message...\n");

mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent);

mc_AclGetSender (message, &name, &address);
printf ("$s: Received a message from %s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_AclSetPerformative (), MC_AclSetSender (), MC_AclAddReplyTo(),
MC_AclSetContent ()

86

MC_AclAddReplyTo()

Synopsis
#include <libmc.h>
int MC_AclAddReplyTo(fipa_acl_message_t* acl, const char® name, const char* address);

Purpose
Add a reply-to address to the ACL message.

Return Value
Returns 0 on success or non-zero on failure.

Parameters
acl An initialized ACL message.
name Sets the name of the reply-to destination.
address Sets the address of the reply-to destination.

Description

This function is used to add a reply-to address to an ACL message. This function may be called multiple
times on an ACL message. each time this function is called, a new reply-to address is appended to the list
of intended reply-to addresses for the ACL message.

Example

<!-- File: fipa_test/test2.xml —-->
<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
#endif

#include <math.h>

#include <fipa_acl.h>
int main ()

87

fipa_acl_message_t+* message;
char *name, =xaddress;

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name);

message = mc_AclNew();

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");
mc_AclSetContent (message, "Content from mobagent2");

printf ("$s: sending ACL message...\n");
mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name);
message = mc_AclWaitRetrieve (mc_current_agent) ;

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %$s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_AclSetPerformative (), MC_AclSetSender (), MC_AclAddReceiver (),
MC_AclSetContent ()

88

MC_AclGetContent()

Synopsis
#include <libmc.h>
const char* MC_AclGetContent(fipa_acl_message_t* acl);

Purpose
Get the content of an ACL message.

Return Value
Returns a valid character string or NULL on failure.

Parameters
acl An initialized ACL message.

Description
This function gets the “content” field of an ACL message.

Example

<!-- File: fipa_test/test2.xml —-->
<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
#endif

#include <math.h>

#include <fipa_acl.h>

int main ()

{
fipa_acl_message_t+* message;
char *name, =xaddress;

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

89

printf ("\n%s: Creating new ACL message.\n", mc_agent_name);

message = mc_AclNew () ;

mc_AclSetPerformative (message, FIPA_INFORM);

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");

mc_AclSetContent (message, "Content from mobagent2");
printf ("$s: sending ACL message...\n");

mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name);
message = mc_AclWaitRetrieve (mc_current_agent);

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_AclSetPerformative (), MC_AclSetSender (), MC_AclAddReceiver(),
MC_AclAddReplyTo ()

90

MC_AclGetConversationID()

Synopsis
#include <libmc.h>
const char* MC_AclGetConversationID(fipa_acl_message_t* acl);

Purpose
Get the conversation id of an ACL message.

Return Value
Returns a character string on success of NULL on failure.

Parameters
acl An initialized ACL message.

Description

This function gets the “conversation-id” field from an ACL message. The conversation ID is used to dif-
ferentiate multiple agent conversations which may be happening simultaneously between two agents. For
more details, please consult the FIPA specifications at http://www.fipa.org.

See Also

MC_AclSetPerformative (), MC_AclSetSender (), MC_AclAddReceiver (),
MC_AclAddReplyTo ()

91

MC_AclGetPerformative()

Synopsis
#include <libmc.h>
enum fipa_performative_e MC_AclGetPerformative(fipa_acl_message_t* acl);

Purpose
Get the performative from an ACL message.

Return Value
Returns a valid FIPA performative enumeration or -1 on failure.
Parameters

acl An initialized ACL message.

Description
This function is used to get the FIPA ACL performative from an ACL message. The performative may be
any valid FIPA performative listed in the table below.

Enumerated Value FIPA Perfomative
FIPA_ ACCEPT_PROPOSAL accept-proposal
FIPA_AGREE agree
FIPA_CANCEL cancel
FIPA CALL_FOR_PROPOSAL call-for-proposal
FIPA_CONFIRM confirm
FIPA_DISCONFIRM disconfirm
FIPA_FAILURE failure
FIPA_INFORM inform
FIPA_INFORM_IF inform-if
FIPA_INFORM_REF inform-ref
FIPA_NOT_UNDERSTOOD not-understood
FIPA_PROPOGATE propogate
FIPA_PROPOSE propose
FIPA_PROXY proxy
FIPA_QUERY_IF query-if
FIPA_QUERY_REF query-ref
FIPA REFUSE refuse
FIPA_REJECT_PROPOSAL reject-proposal
FIPA_REQUEST request
FIPA_REQUEST_WHEN request-when
FIPA_REQUEST _WHENEVER request—whenever
FIPA_SUBSCRIBE subscribe

Example

<!-- File: fipa_test/test2.xml ——>

<?xml version="1.0"7?>

<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

92

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>TIEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
#endif

#include <math.h>

#include <fipa_acl.h>

int main ()

{
fipa_acl_message_t* message;
char *name, =*address;

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name);

message = mc_AclNew();

mc_AclSetPerformative (message, FIPA_INFORM);

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");

mc_AclSetContent (message, "Content from mobagent2");
printf ("$s: sending ACL message...\n");

mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name);
message = mc_AclWaitRetrieve (mc_current_agent);

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>

93

</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_AclSetSender (), MC_AclAddReceiver (), MC_AclAddReplyTo(),

MC_AclSetContent ()

94

MC_AclGetProtocol()

Synopsis
#include <libmc.h>
enum fipa_protocol_e MC_AclGetProtocol(fipa_acl_message_t* acl);

Purpose
Get the protocol of an ACL message.

Return Value
Retuns a valid FIPA Protocol enumeration on success or -1 on failure.

Parameters
acl An initialized ACL message.

Description
This function is used to get the FIPA ACL protocol from an ACL message. The protocol may be any valid
FIPA protocol listed in the table below. The protocol field is not required to be set for a valid ACL message.

Enumerated Value FIPA Protocol

FIPA PROTOCOL_REQUEST FIPA request protocol.
FIPA_PROTOCOL_QUERY FIPA query protocol.

FIPA PROTOCOL_REQUEST WHEN FIPA request—when protocol.
FIPA_ PROTOCOL_CONTRACT_NET FIPA contract-net protocol.
FIPA_PROTOCOL_ITERATED_CONTRACT.NET FIPA iterated-contract-net protocol.
FIPA_PROTOCOL_ENGLISH_AUCTION FIPA english-auction protocol.
FIPA_PROTOCOL_DUTCH_AUCTION FIPA dutch-auction protocol.
FIPA_PROTOCOL_BROKERING FIPA brokering protocol.
FIPA_PROTOCOL_RECRUITING FIPA recruiting protocol.

FIPA PROTOCOL_SUBSCRIBE FIPA subscribe protocol.
FIPA_PROTOCOL_PROPOSE FIPA propose protocol.

Please refer to the FIPA protocol specifications at http://www.fipa.org for more details about each
of these protocols.

See Also

MC_AclSetSender (), MC_AclAddReceiver (), MC_AclAddReplyTo(),
MC_AclSetContent ()

95

MC_AclGetSender()

Synopsis
#include <libmc.h>
int MC_AclGetSender(fipa_acl_message_t* acl, char** name, char** address);

Purpose
Get the sender from an ACL message.

Return Value
Returns 0 on success or non-zero on failure.

Parameters
acl An initialized ACL message.

name (Output) Gets the name of the sender.
address (Output) Gets the address of the sender.

Description
This function takes pointers to characters, automatically allocates space for character strings, and makes
copies of the names and addresses of an ACL message onto those strings. The variables passed into the

name and address parameters of the function should be freed manually by the caller.
Example

<!-— File: fipa_test/test2.xml —->
<?xml version="1.0"?2>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
#endif

#include <math.h>

#include <fipa_acl.h>

int main ()

{
fipa_acl_message_t+* message;
char +*name, xaddress;

96

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name);

message = mc_AclNew();

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");
mc_AclSetContent (message, "Content from mobagent2");

printf ("$s: sending ACL message...\n");
mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent) ;

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %$s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_AclSetPerformative (), MC_AclAddReceiver (), MC_AclAddReplyTo(),
MC_AclSetContent ()

97

MC_AcINew()

Synopsis
#include <libmc.h>
fipa_acl_message t* MC_AclNew(void);

Purpose
Create a new, blank ACL message.

Return Value
Returns a newly allocated ACL message structure or NULL on failure.

Parameters None.

Description
This function allocates and returns a new ACL message. All attributes of the message are set empty values
and must be initialized before sending the message.

Example

<!-— File: fipa_test/test2.xml —->
<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">

<TASK num="0" complete="0" server="localhost:5052">
</TASK>

<AGENT_CODE>

<! [CDATA[

//#include <stdio.h>

#ifndef _WIN32_

#pragma package "/usr/local/ch/package/chmobilec"
#else

#pragma package "C:\\ch\\package\\chmobilec"
#endif

#include <math.h>

#include <fipa_acl.h>

int main ()

{
fipa_acl_message_t+* message;
char *name, xaddress;

98

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name) ;

message = mc_AclNew () ;

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");

mc_AclSetContent (message, "Content from mobagent2");
printf ("%$s: sending ACL message...\n");

mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent);

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_AclPost (), MC_AclReply (), MC_AclRetrieve (), MC_AclSend(),
MC_AclWaitRetrieve ()

99

MC_AclPost()

Synopsis
#include <libmc.h>
int MC_AclPost(MCAgent_t agent, fipa_acl message_t* message);

Purpose
Post a message directly to an agent’s mailbox.

Return Value
Returns 0 on success, non-zero on failure.

Parameters
agent An initialized mobile agent.
messagelhe ACL message to post.

Description
This function is used to post an ACL message directly to an agent’s mailbox. The agent must reside on the
same agency as the caller. No forwarding or checking of any fields of the ACL message is performed.

Example
See Also

MC_AclNew (), MC_AclReply (), MC_AclRetrieve (), MC_AclSend(),
MC_AclWaitRetrieve ()

100

MC _AclReply()

Synopsis
#include <libmc.h>
int MC_AclReply(fipa_acl_message_t* acl_message);

Purpose
Automatically generate an ACL message addressed to the sender of an incoming ACL message..

Return Value
A newly allocated ACL message with the ‘receiver’ field initialized, or NULL on failure.

Parameters
acl_messhlye message to generate a reply to.

Description

This function is designed to make replying to received ACL messages easier. The function automatically
generates a new ACL message with the correct destination address to reach the sender of the original mes-
sage.

Example
See Also

MC_AclNew (), MC_AclPost (), MC_AclRetrieve (), MC_AclSend(),
MC_AclWaitRetrieve ()

101

MC_AclRetrieve()

Synopsis
#include <libmc.h>
int MC_AclRetrieve(MCAgent _t agent);

Purpose
Retrieve a message from an agent’s mailbox.

Return Value
An ACL message on success, or NULL if no messages are in the mailbox.

Parameters
agent An initialized mobile agent.

Description
This function is used to retrieve a message from an agent’s mailbox. The message are retrieved in FIFO
order. If there are no messages in the mailbox, the function will return NULL.

Example

<!-— File: fipa_test/testl.xml -->
<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
fendif

#include <math.h>

#include <fipa_acl.h>

int main ()

{
fipa_acl_message_t* message;
fipa_acl_message_t* reply;

102

printf ("\n%s: Arrived at %s.\n", mc_agent_name, mc_agent_address);

printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent);

printf ("$s: Received a message from %s.\n", mc_agent_name, message->sender->name) ;
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

printf ("$s: Generating a reply message.\n", mc_agent_name);
reply = mc_AclReply (message);
mc_AclSetPerformative (reply, FIPA_INFORM) ;

mc_AclSetSender (reply, mc_agent_name, mc_agent_address);
mc_AclSetContent (reply, "Reply from mobagentl.");

printf ("$s: Sending message...\n", mc_agent_name) ;
mc_AclSend(reply);

mc_AclDestroy (message) ;
mc_AclDestroy (reply);
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_AclNew (), MC_AclPost (), MC_AclReply (), MC_AclSend(),
MC_AclWaitRetrieve ()

103

MC_AclSetContent()

Synopsis
#include <libmc.h>
int MC_AclSetContent(fipa_acl_message_t* acl, const char* name);

Purpose
Set the content on an ACL message.

Return Value
Returns 0 on success or non-zero on failure.

Parameters
acl An initialized ACL message.

content Set the content field of an ACL message.

Description
This function sets the “content” field of an ACL message.

Example

<!-— File: fipa_test/test2.xml -->
<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
fendif

#include <math.h>

#include <fipa_acl.h>

int main ()

{
fipa_acl_message_t* message;
char *name, xaddress;

104

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name) ;

message = mc_AclNew () ;

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");

mc_AclSetContent (message, "Content from mobagent2");
printf ("%$s: sending ACL message...\n");

mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent);

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_AclSetPerformative (), MC_AclSetSender (), MC_AclAddReceiver (),
MC_AclAddReplyTo ()

105

MC_AclSetConversationID()

Synopsis
#include <libmc.h>
int MC_AclSetConversationID(fipa_acl_message_t* acl, const char* id);

Purpose
Set the conversation id on an ACL message.

Return Value
Returns 0 on success or non-zero on failure.

Parameters
acl An initialized ACL message.
content Set the conversation id field of an ACL message.

Description

This function sets the “conversation-id” field of an ACL message. The conversation ID is used to differen-
tiate multiple agent conversations which may be happening simultaneously between two agents. For more
details, please consult the FIPA specifications at http://www. fipa.org.

See Also

MC_AclSetPerformative (), MC_AclSetSender (), MC_AclAddReceiver (),
MC_AclAddReplyTo ()

106

MC_AclSetPerformative()

Synopsis
#include <libmc.h>
int MC_AclSetPerformative(fipa_acl_message_t* acl, enum fipa_performative_e performative);

Purpose
Set the performative on an ACL message.

Return Value
Returns 0 on success or non-zero on failure.

Parameters
acl An initialized ACL message.

per formative The FIPA performative you wish the message to contain.

Description
This function is used to set the FIPA ACL performative on an ACL message. The performative may be any
valid FIPA performative listed in the table below.

Enumerated Value FIPA Perfomative
FIPA_ACCEPT_PROPOSAL ammpbpnmo&ﬂ
FIPA_AGREE agree
FIPA CANCEL cancel
FIPA CALL_FOR_PROPOSAL call-for-proposal
FIPA_CONFIRM confirm
FIPA_DISCONFIRM disconfirm
FIPA_FAILURE failure
FIPA_INFORM inform
FIPA_INFORM_IF inform-if
FIPA_INFORM_REF inform-ref
FIPA_NOT_UNDERSTOOD not-understood
FIPA_PROPOGATE propogate
FIPA_PROPOSE propose
FIPA_PROXY proxy
FIPA_QUERY_IF query-if
FIPA_QUERY_REF query-ref
FIPA REFUSE refuse
FIPA REJECT_PROPOSAL reject-proposal
FIPA_REQUEST request
FIPA_REQUEST_WHEN request-when
FIPA_REQUEST _WHENEVER request—whenever
FIPA_SUBSCRIBE subscribe

Example

<!-- File: fipa_test/test2.xml -->

<?xml version="1.0"7?>

<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

107

<MOBILEC_MESSAGE>

<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>

<NAME>mobagent2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<! [CDATA[

//#include <stdio.h>

#ifndef _WIN32_

#pragma package "/usr/local/ch/package/chmobilec"
felse

#pragma package "C:\\ch\\package\\chmobilec"
fendif

#include <math.h>
#include <fipa_acl.h>
int main ()

{

fipa_acl_message_t* message;
char +*name, =*address;

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name);

message = mc_AclNew () ;

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");

mc_AclSetContent (message, "Content from mobagent2");
printf ("%$s: sending ACL message...\n");

mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent);

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %$s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>

</AGENT_CODE>
</TASKS>

108

</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_AclSetSender (), MC_AclAddReceiver (), MC_AclAddReplyTo(),

MC_AclSetContent ()

109

MC_AclSetProtocol()

Synopsis
#include <libmc.h>
int MC_AclSetProtocol(fipa_acl_message_t* acl, enum fipa_protocol_e protocol);

Purpose
Set the protocol on an ACL message.

Return Value
Returns 0 on success or non-zero on failure.
Parameters
acl An initialized ACL message.
protocol The FIPA protocol you wish the message to contain.

Description
This function is used to set the FIPA ACL protocol on an ACL message. The protocol may be any valid
FIPA protocol listed in the table below. The protocol field is not required to be set for a valid ACL message.

Enumerated Value FIPA Protocol
FIPA_PROTOCOL_REQUEST FIPA request protocol.
FIPA_PROTOCOL_QUERY FIPA query protocol.
FIPA PROTOCOL_REQUEST_WHEN FIPA request-when protocol.
FIPA PROTOCOL_CONTRACT.NET FIPA contract-net protocol.
FIPA_PROTOCOL_ITERATED_CONTRACT.NET FIPA iterated-contract-net protocol. Please
FIPA PROTOCOL_ENGLISH_AUCTION FIPA english-auction protocol.
FIPA PROTOCOL_DUTCH_AUCTION FIPA dutch-auction protocol.
FIPA PROTOCOL_BROKERING FIPA brokering protocol.
FIPA_PROTOCOL_RECRUITING FIPA recruiting pl‘OtOCOl.
FIPA PROTOCOL_SUBSCRIBE FIPA subscribe protocol.
FIPA_PROTOCOL_PROPOSE FIPA propose protocol.
refer to the FIPA protocol specifications at http: //www. fipa.org for more details about each of these
protocols.
See Also

MC_AclSetSender (), MC_AclAddReceiver (), MC_AclAddReplyTo (),
MC_AclSetContent ()

110

MC_AclSetSender()

Synopsis
#include <libmc.h>
int MC_AclSetSender(fipa_acl_message_t* acl, const char* name, const char* address);

Purpose
Set the sender on an ACL message.

Return Value
Returns 0 on success or non-zero on failure.

Parameters
acl An initialized ACL message.

name Sets the name of the sender.
address Sets the address of the sender.

Description
This function is used to allocate and set the “sender” field of an ACL message. If this function is called
more than once on an ACL message, the original data in the “sender” field is overwritten.

Example

<!-— File: fipa_test/test2.xml —->
<?xml version="1.0"?2>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
#endif

#include <math.h>

#include <fipa_acl.h>

int main ()

{
fipa_acl_message_t+* message;
char +*name, xaddress;

111

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name);

message = mc_AclNew();

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");
mc_AclSetContent (message, "Content from mobagent2");

printf ("$s: sending ACL message...\n");
mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent) ;

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %$s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_AclSetPerformative (), MC_AclAddReceiver (), MC_AclAddReplyTo(),
MC_AclSetContent ()

112

MC_AclWaitRetrieve()

Synopsis
#include <libmc.h>
fipa_acl_message_t MC_AclWaitRetrieve(MCAgent_t agent);

Purpose
Wait until there is a message in an agent’s mailbox and retrieve it.

Return Value
An ACL message on success, or NULL on failure. Possible causes for failure include ACL Message parsing
errors, as well as spurious condition variable signals.

Parameters
agent An initialized agent.

Description

This function is used to wait for activity on an empty mailbox. If this function is called on an empty mailbox,
the function will block indefinitely until a message is posted to the mailbox. Once a message is posted, the
function will unblock and return the new message.

Example

<!-— File: fipa_test/testl.xml ——>
<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
fendif

#include <math.h>
#include <fipa_acl.h>
int main ()

{

113

fipa_acl_message_t* message;
fipa_acl_message_t* reply;

printf ("\n%s: Arrived at %s.\n", mc_agent_name, mc_agent_address);

printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent);

printf ("$s: Received a message from %s.\n", mc_agent_name, message->sender->name) ;
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

printf ("$s: Generating a reply message.\n", mc_agent_name);
reply = mc_AclReply (message);
mc_AclSetPerformative (reply, FIPA_INFORM) ;

mc_AclSetSender (reply, mc_agent_name, mc_agent_address);
mc_AclSetContent (reply, "Reply from mobagentl.");

printf ("$s: Sending message...\n", mc_agent_name);
mc_AclSend(reply);

mc_AclDestroy (message) ;
mc_AclDestroy (reply);
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_AclNew (), MC_AclPost (), MC_AclReply (), MC_AclSend(),
MC_AclWaitRetrieve ()

114

MC_AgentAddTask()

Synopsis

#include <libmc.h>

int MC_AgentAddTask(MCAgent_t agent, const char* code, const char* return_var_name, const
char* server, int persistent);

Purpose
This function is used to append a task onto an existing agent.

Return Value
The function returns 0 on success or a non-zero error code on failure.

Parameters
agent A fully initialized agent handle.
code The agent C/C++ code.
return_var_name (optional) The name of the agent’s return variable.
server The name of the destination server to send the agent.
persistent Whether or not the created agent should be persistent.
Description

This function is used to append a task onto an agent’s task list. Multi-task agent may be created by using

this function in conjunction with the MC_ComposeAgent x functions.
Example

/* File: multi_task_example/client.c x/

#include <stdio.h>
#include <libmc.h>

int main ()

{
MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
double xagent_return_value;
int task_num;
int local_port=5050;

MC_TInitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);

/+ Compose the agent from a task source file x/
agent = MC_ComposeAgentFromFile (

"mobagent3", /% Name =/

"localhost:5050", /* Home - This is the host the agent will return to
* when it has finished its tasks. x/

"IEL", /* Owner */

"taskl.c", /* Code filename =*/

"results_taskl", /* Return Variable Name =/

"localhost:5051", /* server/destination host =*/

115

0 /* persistent x/
)i

/+ Add one more task */
MC_AgentAddTaskFromFile (

agent, /* Agent handle x/

"task2.c", /+* Task code file name =x/
"results_task2", /* Return Variable Name =x/
"localhost:5052", /* server/destination host x/
0); /% Persistent =/

/* Add the agent =/
MC_AddAgent (agency, agent);

/* Wait for return-agent arrival signal =*/
MC_WaitSignal (agency, MC_RECV_RETURN) ;

/+ Make sure we caught the correct agent =/
agent = MC_FindAgentByName (agency, "mobagent3");

if (agent == NULL) {
fprintf (stderr, "Did not receive correct agent. \n");
exit (1);

task_num = 0; /% Get return value from first task x/

agent_return_value = (doublex)MC_AgentReturnDataGetSymbolAddr (agent, task_num);
printf ("The return value from the first task is %1f\n", xagent_return_value);
task_num++; /* Get the return value from the second (and last) task. =*/
agent_return_value = (doublex)MC_AgentReturnDataGetSymbolAddr (agent, task_num);
printf ("The return value from the second task is %1f\n", =*agent_return_value);

/* We must reset the signal that we previously caught with the
* MC_WaitSignal () function with MC_ResetSignal () =*/
MC_ResetSignal (agency) ;

MC_End (agency) ;
return 0;

See Also
MC_AgentAddTaskFromFile ()

116

MC_AgentAddTaskFromFile()

Synopsis

#include <libmc.h>

int MC_AgentAddTaskFromFile(MCAgent_t agent, const char* filename, const char* return_var_name,
const char* server, int persistent);

Purpose
This function is used to append a task onto an existing agent.

Return Value
The function returns O on success or a non-zero error code on failure.

Parameters
agent A fully initialized agent handle.
filename A file containing the task C/C++ source code.
return_var_name (optional) The name of the agent’s return variable.
server The name of the destination server to send the agent.
persistent Whether or not the created agent should be persistent.
Description

This function is used to append a task onto an agent’s task list. Multi-task agent may be created by using

this function in conjunction with the MC_ComposeAgent x functions.
Example

/* File: multi_task_example/client.c x/

#include <stdio.h>
#include <libmc.h>

int main ()

{
MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
double xagent_return_value;
int task_num;
int local_port=5050;

MC_TInitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);

/+ Compose the agent from a task source file x/
agent = MC_ComposeAgentFromFile (

"mobagent3", /% Name =/

"localhost:5050", /* Home - This is the host the agent will return to
* when it has finished its tasks. x/

"IEL", /* Owner */

"taskl.c", /* Code filename =*/

"results_taskl", /* Return Variable Name =/

"localhost:5051", /* server/destination host =*/

117

0 /* persistent x/
)i

/+ Add one more task */
MC_AgentAddTaskFromFile (

agent, /* Agent handle x/

"task2.c", /+* Task code file name =x/
"results_task2", /* Return Variable Name =x/
"localhost:5052", /* server/destination host x/
0); /% Persistent =/

/* Add the agent =/
MC_AddAgent (agency, agent);

/* Wait for return-agent arrival signal =*/
MC_WaitSignal (agency, MC_RECV_RETURN) ;

/+ Make sure we caught the correct agent =/
agent = MC_FindAgentByName (agency, "mobagent3");

if (agent == NULL) {
fprintf (stderr, "Did not receive correct agent. \n");
exit (1);

task_num = 0; /% Get return value from first task x/

agent_return_value = (doublex)MC_AgentReturnDataGetSymbolAddr (agent, task_num);
printf ("The return value from the first task is %1f\n", xagent_return_value);
task_num++; /* Get the return value from the second (and last) task. =*/
agent_return_value = (doublex)MC_AgentReturnDataGetSymbolAddr (agent, task_num);
printf ("The return value from the second task is %1f\n", =*agent_return_value);

/* We must reset the signal that we previously caught with the
* MC_WaitSignal () function with MC_ResetSignal () =*/
MC_ResetSignal (agency) ;

MC_End (agency) ;
return 0;

See Also
MC_AgentAddTask ()

118

MC_AgentAttachFile()

Synopsis
#include <libmc.h>
int MC_AgentAttachFile(MCAgent_t agent, const char* name, const char* filepath,);

Purpose
This function is used to attach a file to an agent.

Return Value
The function returns 0 on success or a non-zero error code on failure.

Parameters
agent A fully initialized agent handle.
name An alias to identify the attached file.
filepath The path to the file. Local paths are calculated from the execution directory of the
agency.
Description

This function is used to attach a file to an agent. The file may later be retrieved with the functions
MC_AgentRetrieveFile () or mc_.AgentRetrieveFile (). The files are attached to the agent’s

currently executing task.
Example

/* File: miscellaneous/taskl.c =/

int main ()

{
printf ("Hello. Now attaching file...\n");
mc_AgentAttachFile (mc_current_agent, "data", "data.png");
return 0;

/* File: miscellaneous/task2.c */

int main ()
{
charxx files;
int num_files;
int 1i;
int status;
printf ("Hello. Now retrieving file...\n");

mc_AgentListFiles (mc_current_agent, 0, &files, &num_files);
printf ("$d saved files:\n", num_files);
for(i = 0; 1 < num_files; i++) {
printf ("$s\n", files[il]);
}
status = mc_AgentRetrieveFile (mc_current_agent, 0, "data", "data_retrieved.png");
if (status) {
printf ("Error retrieving file.\n");

}

119

return 0;

}

See Also
MC_AgentRetrieveFile (), MC_AgentListFiles()

120

MC_AgentListFiles()

Synopsis

#include <libmc.h>

int MC_AgentListFiles(MCAgent_t agent, int tasknum, char*** names /+ OUT =/, int* num files
/% OUT */);

Purpose
This funciton is used to list the files attached to an agent’s task.

Return Value
The function returns 0 on success or a non-zero error code on failure.

Parameters
agent A fully initialized agent handle.
tasknum The selected task to list attached files.
names A two dimensional array to fill with names of attached files. This data structure
will need to be freed by the user after usage.
numfiles An integer to fill with the number of files attached to the task.
Description

This function is used to retrieve the names of files that are attached to an agent’s task. The names may be used
in other API function called such as MC_AgentRetrieveFile () ormc_AgentRetrieveFile ().
Example

Please see the example listed with the documentation for MC_AgentAttachFile ().

See Also

MC_AgentRetrieveFile (), MC_AgentAttachFiles /()

121

MC _AgentProcessingBegin()
MC_AgentProcessingEnd()

Synopsis

#include <libmc.h>

int MC_AgentProcessingBegin(MCAgency_t agency);
int MC_AgentProcessingEnd(MCAgency_t agency);

Purpose
These functions ensure that the agents in an agency are not added or deleted during the execution of a block
of code.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency A handle associated with a running agency.

Description

These functions are used to ensure that the agents on an agency do not change. These functions should
be used if the user wishes to inspect the on-board agents using functions such as MC_GetNumAgents, or
any other functions that deal with agents, in a serial manner. For instance, if the user first wishes to call
MC_GetNumAgents (), and then loop through each agent to perform an action, they should encapsulate
that block of code with calls to MC_AgentProcessingBegin () and MC_AgentProcessingEnd (),
to ensure that no new agents are added or deleted during the execution of the for loop.

Example

#include <stdio.h>
#include <stdlib.h>
#include <libmc.h>
#define TotalMA 2

int main ()
{
MCAgency_t agency;
MCAgent_t agent;
MCAgent_t* agents;
int num_agents;
MCAgencyOptions_t options;
int my_port = 5125;
int dim, 1i;
const double =xdata;
char #*name;
MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =/
agency = MC_Initialize (my_port, &options);
/* Note: The third argument of the following function may also be a
valid IP address in the form of a string. i.e. 192.168.0.1 «/
/+ Sending to first host =*/
MC_SendAgentFile (agency, "testl.xml");

122

/% Sending to second host =*/
MC_SendAgentFile (agency, "test2.xml");
MC_SendAgentFile (agency, "test3.xml");

/+ Wait for a few seconds for agents to return =/
printf ("Waiting for agents to return...\n");
#ifdef _WIN32
Sleep (3000);
#else
sleep(3);
#endif

/+* Try getting all of the active agents =*/
printf ("Getting active agents...\n");

/+ First lock the agent queue so agents stick around while we print them =/
MC_AgentProcessingBegin (agency) ;
MC_GetAgents (agency, &agents, &num_agents, (1<<MC_AGENT_ACTIVE));
for(i = 0; i < num_agents; i++) {
printf ("Agent name: %s\n", MC_GetAgentName (agents[i]));

free (agents);
/* Try getting all neutral agents =/
printf ("Getting neutral agents...\n");
MC_GetAgents (agency, &agents, &num_agents, (1<<MC_AGENT_NEUTRAL));
for(i = 0; i < num_agents; i++) {
printf ("Agent name: %s\n", MC_GetAgentName (agents[i]));
}
/* Agent processing done «*/
MC_AgentProcessingEnd (agency) ;

MC_End (agency) ;

exit (0);

See Also

123

MC_AgentRetrieveFile()

Synopsis
#include <libmc.h>
int MC_AgentRetrieveFile(MCAgent_t agent, int tasknum, const char* name, const char* filepath,

)

Purpose
This function is used to retrieve and save a file to from agent.

Return Value
The function returns 0 on success or a non-zero error code on failure.

Parameters
agent A fully initialized agent handle.
tasknum The task in which to retrieve the file.
name An alias to identify the attached file.
filepath The path to save the file. Local paths are calculated from the execution directory
of the agency.
Description

This function is used to retrieve a file from an agent task. The file must be attached to the agent from a prior
call to MC_AgentAttachFile (). The executing agency must have write permissions to save the file to
the correct location.

Example

Please see the example code attached with the documentation for MC_AgentAttachFile.

See Also

MC_AgentAttachFile (), MC_AgentListFiles ()

124

MC _AgentReturnArrayDim()

Synopsis
#include <libmc.h>
int MC_AgentReturnArrayDim(MCAgent_t agent, int task_num);

Purpose
Get the dimension of an array contained within a return agent.

Return Value
Returns the dimension of the array or -1 on failure.

Parameters
e agent : A return agent.
e task_num: This variable chooses which task within an agent to retrieve the array dimension.

Description
This function finds the array dimension of an array contained within a return agent. An agent may have
multiple tasks, each with its own return value. The task_num argument chooses which task within an

agent to obtain information about.
Example

/+* File: multi_task_example/client.c */

#include <stdio.h>
#include <libmc.h>

int main ()

{
MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
double xagent_return_value;
int task_num;
int local_port=5050;

MC_TInitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);

/+ Compose the agent from a task source file x/
agent = MC_ComposeAgentFromFile (
"mobagent3", /% Name =%/
"localhost:5050", /* Home - This is the host the agent will return to
* when it has finished its tasks. =/

"IEL", /x Owner =/

"taskl.c", /* Code filename =x/
"results_taskl", /+* Return Variable Name =x/
"localhost:5051™", /+ server/destination host x/
0 /+ persistent =/

)i

125

/+ Add one more task =/
MC_AgentAddTaskFromFile (

agent, /+ Agent handle x/

"task2.c", /* Task code file name =*/
"results_task2", /+* Return Variable Name =x/
"localhost:5052", /+ server/destination host */
0); /+ Persistent =/

/* Add the agent */
MC_AddAgent (agency, agent);

/* Wait for return-agent arrival signal =*/
MC_WaitSignal (agency, MC_RECV_RETURN) ;

/+ Make sure we caught the correct agent =/
agent = MC_FindAgentByName (agency, "mobagent3");

if (agent == NULL) {

fprintf (stderr, "Did not receive correct agent. \n");

exit (1);
}
task_num = 0; /* Get return value from first task =/
agent_return_value = (doublex)MC_AgentReturnDataGetSymbolAddr (agent, task_num);
printf ("The return value from the first task is %$1f\n", xagent_return_value);
task_num++; /* Get the return value from the second (and last) task. =*/
agent_return_value = (doublex)MC_AgentReturnDataGetSymbolAddr (agent, task_num);
printf ("The return value from the second task is %1f\n", =*agent_return_value);

/* We must reset the signal that we previously caught with the
* MC_WaitSignal () function with MC_ResetSignal () =*/
MC_ResetSignal (agency) ;

MC_End (agency) ;
return 0;

See Also
MC_AgentReturnArrayExtent (), MC_AgentReturnArrayNum ()

126

MC_AgentReturnArrayExtent()

Synopsis
#include <libmc.h>
int MC_AgentReturnArrayExtent(MCAgent_t agent, int task_num, int index);

Purpose
Get the extent of a dimension of an array contained within a return agent.

Return Value
Returns the extent of the dimension of the array and index index, or -1 on failure.

Parameters
e agent : A return agent.
e task_num : This variable chooses which task within an agent to retrieve the array dimension.
e index : The index of the array dimension to retrieve.

Description
This function is used to retrieve the extent of a single dimension of an array held by a returning agent. The
index argument must be smaller than the dimension of the array.

Example
Please see the example for MC_AgentReturnArrayDim () on page
See Also

MC_AgentReturnArrayDim(), MC_AgentReturnArrayNum ()

127

MC _AgentReturnArrayNum()

Synopsis
#include <libmc.h>
int MC_AgentReturnArrayNum(MCAgent_t agent, int task_num);

Purpose
Get the total number of elements in an array returned by a returning agent.

Return Value
Returns the total number of elements in the array, or -1 on failure.

Parameters
e agent : A return agent.

e task_num : This variable chooses which task within an agent to retrieve the number of array ele-
ments.

Description

This function is used to find the total number of elements of a returned array. For example, if a 3 by 4
two-dimensional array is returned, this function will report that there are 12 elements in the array.
Example

Please see the example for MC_AgentReturnArrayDim () on page[125]

See Also

MC_AgentReturnArrayDim (), MC_AgentReturnArrayExtent ()

128

MC_AgentReturnDataGetSymbolAddr()

Synopsis
#include <libmc.h>
const void* MC_AgentReturnDataGetSymbolAddr(MCAgent_t agent, int task_num);

Purpose
Get a pointer to the array contained within a return agent.

Return Value
Returns a valid pointer or NULL on failure.

Parameters
e agent : A return agent.
e task_num : This variable chooses which task within an agent to retrieve the array.

Description

This function retrieves a pointer to the first element of an array returned by a returning agent.

Example

Please see the example for MC_AgentReturnArrayDim () on page

See Also

MC_AgentReturnArrayDim (), MC_AgentReturnArrayExtent (), MC_AgentReturnArrayNum(),
MC_AgentReturnDataSize (), MC_AgentReturnDataType(),

129

MC_AgentReturnDataSize()

Synopsis
#include <libmc.h>
size_t MC_AgentReturnDataSize(MCAgent_t agent, int task_num);

Purpose
Get the size of the datatype of an array returned by a returning agent.

Return Value
Returns a positive value of -1 on failure.

Parameters
e agent : A return agent.
e task_num : This variable chooses which task within an agent to retrieve the datasize.

Description

This function retrieves the size of the datatype of an array. In other words, it is the size in bytes of a single

element of the array.

Example

Please see the example for MC_AgentReturnArrayDim () on page[25]

See Also

MC_AgentReturnArrayDim (), MC_AgentReturnArrayExtent (), MC_AgentReturnArrayNum(),
MC_AgentReturnDataGetSymbolAddr (), MC_AgentReturnDataType(),

130

MC_AgentReturnDataType()

Synopsis
#include <libmc.h>
ChType_t MC_AgentReturnDataType(MCAgent_t agent, int task_num);

Purpose
Get the data type of an array returned by a returning agent.

Return Value
Returns a positive value of -1 on failure.

Parameters
e agent : A return agent.
e task_num : This variable chooses which task within an agent to retrieve the datasize.

Description

This function returns the Ch datatype of an agent’s return variable. The ChType_t type is defined in “ch.h”

header file, typically located in the <CHHOME>/extern/include directory.

Example

Please see the example for MC_AgentReturnArrayDim () on page[125]

See Also

MC_AgentReturnArrayDim (), MC_AgentReturnArrayExtent (), MC_AgentReturnArrayNum(),
MC_AgentReturnDataGetSymbolAddr (), MC_AgentReturnDataSize(),

131

MC _AgentReturnlsArray()

Synopsis
#include <libmc.h>
int MC_AgentReturnIsArray(MCAgent_t agent, int task_num);

Purpose
Determine whether an agent’s return value is an array or not.

Return Value
Returns 1 if it is an array, O if it is not array, or -1 on failure, such as if there is no return data..

Parameters
e agent : A return agent.
e task_num: A task number.

Description

This function is used to determine if a return variable is an array or just a scalar value.
Example

Please see the example for MC_AgentReturnArrayDim () on page

See Also

MC_AgentReturnArrayExtent (), MC_AgentReturnArrayNum ()

132

MC_AddAgent()

Synopsis
#include <libmc.h>
int MC_AddAgent(MCAgency_t agency, MCAgent_t agent);

Purpose
Add a mobile agent into an agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency An initialized agency handle to add an agent to.

agent An initialized mobile agent.

Description
This function adds a mobile agent to an already running agency.
Please note, please lock the agent queue with function MC_QueueWRLock (agency, MC_QUEUE_AGENT) ;

prior to calling the MC_AddAgent () function.
Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
int main ()
{
MCAgency_t agencyl;
MCAgency_t agency2;
MCAgencyOptions_t options;
int 1i;
int portl = 5051;
int port2 = 5052;

MCAgent_t agent;
MCAgent_t agent_copy;

MC_InitializeAgencyOptions (&options);

/+ We want _all_ the threads on: EXCEPT, the command prompt thread =/
for (i = 0; i < MC_THREAD_ALL; i++) {
MC_SetThreadOn (&options, 1i);
}
MC_SetThreadOff (¢options, MC_THREAD_CP); /x Turn off command prompt =*/

agencyl = MC_Initialize(
portl,
&options);

agency2 = MC_Initialize(

133

portz,
&options);

while (1) |
agent = MC_WaitRetrieveAgent (agencyl);
MC_CopyAgent (&agent_copy, agent);
MC_SetAgentStatus (agent_copy, MC_WAIT_CH);
MC_AddAgent (agency2, agent_copy) ;
MC_ResetSignal (agencyl);

return 0;

See Also

134

MC_AddAgentInitCallback()

Synopsis

#include <libmc.h>

int MC_AddAgentInitCallback(MCAgency_t agency, MC_AgentInitCallbackFunc_t function, void*
user_data);

Purpose
Register a callback function executed during agent initialization.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency An initialized agency handle to add an agent to.
function The callback function.
user_data User data to be passed to the callback function

Description

This function adds a agent initialization callback function to an already running agency. The callback
function is called after the Ch interpreter for an agent is fully initialized, but before the agent is executed
with the interpreter. The callback function may modify the Ch intepreter and/or the incoming agent before
they are executed. The callback function will be called once for every incoming agent. The callback function
should have a prototype of the form

int function(ChInterp_t interp, MCAgent_t agent, voidx user_data);

The callback function should return zero to indicate that everything succeeded and that the agent execu-
tion process should continue normally. If the callback function returns a non-zero value, the agent will be
forced into a neutral “persistent” state, and will not be executed. The agent will remain neutral in the agency

until either the agency terminates or further actions are taken to purge the agent.
Example

/* File: hello_world/server.c x/

#include <stdio.h>
#include <libmc.h>
#include <embedch.h>

int agentCallbackFunc (ChInterp_t interp, MCAgent_t agent, voidx user_data);
EXPORTCH double mult_chdl (voidx varg);

int main ()

{
MCAgency_t agency;
int local_port = 5051;
setbuf (stdout, NULL);

agency = MC_Initialize(local_port, NULL);
MC_AddAgentInitCallback (agency, agentCallbackFunc, NULL);

135

MC_MainLoop (agency) ;

MC_End (agency) ;
return 0;

/* This callback function is called during the initialization step of each

* incoming agent.

* the agent will be able to call. x/

int agentCallbackFunc (ChInterp_t interp,

{
Ch_DeclareFunc (interp,
return 0;

"double mult (double x,

/+ 0 for success error status =/

EXPORTCH double mult_chdl (voidx varg)

{
double retval;
double x, vy;
ChInterp_t interp;
Chvalist_t ap;

Ch_vVaStart (interp, ap,
x = Ch_VaArg(interp,
y = Ch_VaArg(interp,
retval = x * y;
Ch_VaEnd (interp,
return retval;

ap) ;

See Also

ap,
ap,

varg);

double) ;
double) ;

136

MCAgent_t agent,

double vy);",

We will add a c-space function to each interpreter that

void* user_data)

(ChFuncdl_t)mult_chdl);

MC_AddStationaryAgent()

Synopsis

#include <libmc.h>

int MC_AddStationaryAgent(MCAgency_t agency, void* (*agent_thread)(struct agent_thread_arg _s*),
MCAgent_t agent);

Purpose

Add a stationary binary-thread agent into an agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency An initialized agency handle to add an agent to.

agent_thread A C function to act as a local, stationary, binary agent.
agent_args Additional data to be provided to a stationary agent. This argument may be retrieved from
within the agent using the function call MC_AgentInfo_GetAgentArg ().

Description
The agent _thread function is executed in its own thread and treated as an agent. The stationary binary
agent has access to all the standard Foundation for Intelligent Physical Agents Agent Communication Lang-
page (FIPA ACL) APIL. More information regarding FIPA ACL messages are located in chapter [/| of this
document.
The return value of the agent_thread function is currently ignored by Mobile-C, and it is recom-
mended that all stationary agent threads return NULL upon completion.
Additional data may be provided to the agent thread by using the agent _args argument in the function
call. This argument may be retrieved by the agent function by using the function MC_Agent Info_GetAgentArgs ().

Example

/+ File: stationary_agent_communication/server.c =*/

#include <stdio.h>
#include <libmc.h>
#include <fipa_acl.h>

voidx stationary_agent_func(stationary_agent_info_t* stationary_agent_info)
{

/+ Wait for and receive a message x/

fipa_acl_message_tx acl_message;

fipa_acl_message_t* reply_message;

printf ("Stationary agent online.\n");
printf ("Stationary agent waiting for ACL message...\n");
acl_message = MC_AclWaitRetrieve (MC_AgentInfo_GetAgent (stationary_agent_info));
if (acl_message != NULL) {

printf ("Received an ACL message.\n");

printf ("ACL message content is \"%s\"\n",

MC_AclGetContent (acl_message)) ;
printf ("Composing a reply to the message...\n");
reply_message = MC_AclReply(acl_message);

137

MC_AclSetPerformative (reply_message, FIPA_INFORM);
MC_AclSetSender (reply_message, "agentl", "http://localhost:5051/acc");
MC_AclSetContent (reply_message, "Hello to you too, agent2!");
MC_AclSend (
MC_AgentInfo_GetAgency (stationary_agent_info),
reply_message) ;
} else {
printf ("Error retrieving ACL message\n");

#ifndef _WIN32
fflush (stdout) ;
fendif
return NULL;

int main ()

{
MCAgency_t agency;
MCAgencyOptions_t options;
int local_port = 5051;

MC_InitializeAgencyOptions (&options);
/+ If the following line is uncommented, the command prompt
* will be disabled. x/
MC_SetThreadOff (&options, MC_THREAD_CP);
agency = MC_Initialize(local_port, &options);
MC_AddStationaryAgent (agency, stationary_agent_func, "agentl", NULL);
MC_MainLoop (agency) ;
MC_End (agency) ;

return 0;

See Also

138

MC _Barrier()

Synopsis
#include <libmc.h>
int MC _Barrier(MCAgency_t agency, int id);

Purpose
This function blocks the calling thread until all registered threads and agents have been blocked.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters

agency The agency in which to find the barrier to lock.
id The id of the barrier to wait on.

Description

This function is used to synchronize a number of agents and threads. Each barrier is initialized so that it will
block the execution of threads and agents until a predetermined number of threads or agents have activated
the barrier, at which point all blocked threads and agents will be released simultaneously.

Example
Please see the example located at the directory mobilec/demos/mc_barrier_example/ .

See Also
MC _BarrierDelete(), MC _BarrierInit().

139

MC _BarrierDelete()

Synopsis
#include <libmc.h>
int MC _BarrierDelete(MCAgency_t agency, int ¢d);

Purpose
This function deletes a previously initialized Mobile-C Barrier variable.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters

agency The agency in which to find the barrier to delete.
id The id of the barrier to delete.

Description
This function deletes a previously initialized variable. Care should be taken when calling this function. If
there are any agents or threads blocked by a barrier that is deleted, they may remain blocked forever.

Example
Please see the example located at the directory mobilec/demos/mc_barrier_example/ .

See Also
MC _Barrier(), MC_BarrierInit().

140

MC _Barrierlnit()

Synopsis
#include <libmc.h>
int MC _BarrierInit(MCAgency_t agency, int ¢d, int num_procs);

Purpose
This function initializes a Mobile-C Barrier variable for usage.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters
agency The agency in which initialized the barrier.
id The id of the barrier.

num_procs The number of threads or agents the barrier will block before continuing.

Description
This function is used to initialize Mobile-C Barrier variables for usage by the MC_Barrier () function.

Example
Please see the example located at the directory mobilec/demos/mc_barrier_example/ .

See Also
MC _Barrier(), MC_BarrierDelete().

141

MC_CallAgentFunc()

Synopsis
#include <libmc.h>
int MC_CallAgentFunc(MCAgent_t agent, const char* funcName, void* returnVal, ...);

Purpose
This function is used to call a function that is defined in an agent.

Return Value
This function returns O on success, or a non-zero error code on failure.

Parameters
agent The agent in which to call a function.
funcName The function to call.
returnVal (Output) The return value of the agent function.
Arguments to pass to the function.

Description

This function enables a program to treat agents as libraries of functions. Thus, an agent may provide a
library of functions that may be called from binary space with this function, or from another agent by the
agent-space version of this function.

Example

#include <libmc.h>
#include <embedch.h>
#include <stdio.h>

int main ()

{
MCAgency_t agency;
MCAgent_t agent;
int retval;
MCAgencyOptions_t options;
int local_port=5051;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =/

/+ Init the agency x/

agency = MC_Initialize(
local_port,
&options);

printf ("Please press ’'enter’ once the sample agent has arrived.\n");
getchar();
agent = MC_FindAgentByName (agency, "mobagentl");

if (agent == NULL) {
printf ("Could not find agent!\n");
exit (0);

142

/+ The following executution of code may be performed two different
ways: The first way, which is commented out in this example,
involves retrieving the agent’s interpreter with
MC_GetAgentExecEngine () and using the Embedded Ch api to call
the function. The second method involves using the Mobile-C
api to call the function. Both of these methods used here produce
identical results. */

MC_CallAgentFunc (

agent,

"hello",

&retval,

2, /% Num Arguments x/
5/

T);

printf ("Value of %d was returned.\n", retval);

/+ End the persistent agent =*/
MC_DeleteAgent (agent) ;

MC_End (agency) ;
return 0;

See Also
MC_CallAgentFuncVar()

143

MC_CallAgentFuncV()

Synopsis
#include <libmc.h>
int MC_CallAgentFuncV(MCAgent_t agent, const char* funcName, void* returnV al, va_list ap);

Purpose
This function is used to call a function that is defined in an agent.

Return Value
This function returns O on success, or a non-zero error code on failure.

Parameters
agent The agent in which to call a function.
funcName The function to call.
returnVal (Output) The return value of the agent function.
ap A C variable argument list to pass to the function.

Description

This function enables a program to treat agents as libraries of functions. Thus, an agent may provide a
library of functions that may be called from binary space with this function, or from another agent by the
agent-space version of this function.

Example

#include <libmc.h>
#include <embedch.h>
#include <stdio.h>

int main ()

{
MCAgency_t agency;
MCAgent_t agent;
int retval;
MCAgencyOptions_t options;
int local_port=5051;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =/

/+ Init the agency x/

agency = MC_Initialize(
local_port,
&options);

printf ("Please press ’'enter’ once the sample agent has arrived.\n");
getchar();
agent = MC_FindAgentByName (agency, "mobagentl");

if (agent == NULL) {
printf ("Could not find agent!\n");
exit (0);

144

/+ The following executution of code may be performed two different
ways: The first way, which is commented out in this example,
involves retrieving the agent’s interpreter with
MC_GetAgentExecEngine () and using the Embedded Ch api to call
the function. The second method involves using the Mobile-C
api to call the function. Both of these methods used here produce
identical results. */

MC_CallAgentFunc (

agent,

"hello",

&retval,

2, /% Num Arguments x/
5/

T);

printf ("Value of %d was returned.\n", retval);

/+ End the persistent agent =*/
MC_DeleteAgent (agent) ;

MC_End (agency) ;
return 0;

See Also
MC_CallAgentFuncVar()

145

MC_CallAgentFuncVar()

Synopsis
#include <libmc.h>
int MC_CallAgentFunc(MCAgent_t agent, const char* funcName, void* returnVal, void* varg);

Purpose
This function is used to call a function that is defined in an agent.

Return Value
This function returns O on success, or a non-zero error code on failure.

Parameters
agent The agent in which to call a function.
funcName The function to call.
returnVal (Output) The return value of the agent function.
varg An argument to pass to the function.

Description

This function enables a program to treat agents as libraries of functions. Thus, an agent may provide a
library of functions that may be called from binary space with this function, or from another agent by the
agent-space version of this function.

Example

#include <libmc.h>
#include <embedch.h>
#include <stdio.h>

int main ()

{
MCAgency_t agency;
MCAgent_t agent;
int retval;
MCAgencyOptions_t options;
int local_port=5051;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =/

/+ Init the agency x/

agency = MC_Initialize(
local_port,
&options);

printf ("Please press ’'enter’ once the sample agent has arrived.\n");
getchar();
agent = MC_FindAgentByName (agency, "mobagentl");

if (agent == NULL) {
printf ("Could not find agent!\n");
exit (0);

146

/+ The following executution of code may be performed two different
ways: The first way, which is commented out in this example,
involves retrieving the agent’s interpreter with
MC_GetAgentExecEngine () and using the Embedded Ch api to call
the function. The second method involves using the Mobile-C
api to call the function. Both of these methods used here produce
identical results. */

MC_CallAgentFunc (

agent,

"hello",

&retval,

2, /% Num Arguments x/
5/

T);

printf ("Value of %d was returned.\n", retval);

/+ End the persistent agent =*/
MC_DeleteAgent (agent) ;

MC_End (agency) ;
return 0;

See Also
MC_CallAgentFunc()

147

MC_ChlnitializeOptions()

Synopsis
#include <libmc.h>
int MC_ChlnitializeOptions(MCAgency _t agency, ChOptions_t *options);

Purpose
Set the initialization options for a Ch to be used as one AEE in an agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency A Mobile-C Agency.
options Options for setting a Ch to be used as one AEE in an agency. ChOptions_t is defined as a
structure as the following:

typedef struct ChOptions{

int shelltype; // shell type

char xchhome; // Embedded Ch home directory
} ChOptions_t;

Description

This function sets up a Ch for executing the mobile agent code. The Ch shell type and the startup file to be
used are indicated in the argument options. If this function is not called, the default value for ChOptions
will be used to start up a Ch for running the mobile agent code.

Example

#include <libmc.h>
#include <string.h>
#include <embedch.h>
int main() {

MCAgency_t agency;

int local_port = 5130;

/***
* A typical home directory of Embedded Ch on Windows would be *
* like "C:/Program Files/Company Name/program/embedch". We used =
x "C:/Ch/toolkit/embedch" for testing purposes. *

***/
char embedchhome[] = "C:/Ch/toolkit/embedch";
ChOptions_t* ch_options;
MCAgencyOptions_t mc_options;

MC_InitializeAgencyOptions (&mc_options);

ch_options = (ChOptions_tx)malloc (sizeof (ChOptions_t));

148

ch_options->shelltype
ch_options->chhome

strcpy (ch_options->chhome,

mc_options.ch_options

agency
if (MC_MainLoop (agency)

MC_End (agency) ;
return -1;

return 0;

}
See Also

MC_Initialize(local_port,

CH_REGULARCH;

malloc (strlen (embedchhome) +1);

embedchhome) ;

ch_options;

&mc_options);

0) {

149

MC_ComposeAgent()

Synopsis

#include <libmc.h>

MCAgent_t MC_ComposeAgent(const char* name, const char* home, const char* owner, const
char* code, const char* return_var_name, const char* server, int persistent);

Purpose
This function is used to compose an agent from source code.

Return Value
The function returns a valid agent on success and NULL otherwise.

Parameters
name The name to assign to the new agent.
home The home of the new agent.
owner The owner of the new agent.
code The agent C/C++ code.
return_var_name (optional) The name of the agent’s return variable.
server The name of the destination server to send the agent.
persistent Whether or not the created agent should be persistent.
Description
This function is used to create an agent C/C++ source code.
Example

#include <stdio.h>
#include <string.h>
#include <libmc.h>

MCAgent_t makeAgent (int local_port, charx filename, char* agentName)
{

MCAgent_t agent;

char code[20000]={0};

char address[100];

FILE* fptr;

fptr = fopen(filename,"xr");
fread(code, 1, 20000, fptr);
fclose (fptr);

sprintf (address, "monkey.engr.ucdavis.edu:%d", local_port);

agent = MC_ComposeAgent (agentName, address,
"monkey.engr.ucdavis.edu", code, NULL, address, 0);
return agent;

int main(int argc, charxx argv) ({
MCAgency_t agency;
MCAgent_t agent;
MCAgencyOptions_t options;

150

int local_port = 5050;

if (argc == 2) local_port = atoi(argv[l]);

MC_InitializeAgencyOptions (&options);

MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =/
agency = MC_Initialize(local_port, &options);

printf ("\n---- FIPA COMM TEST ----\n\n");

agent = makeAgent (local_port, "listener.c", "listener");
MC_AddAgent (agency, agent);

if (MC_MainLoop (agency) != 0) {

MC_End (agency) ;
return -1;

return 0;

}

See Also
MC_ComposeAgentS (), MC_ComposeAgentFromFile ()

151

MC,ComposeAgentS() [Deprecated]

Synopsis

#include <libme.h>

MCAgent_t MC_ComposeAgentS(const char* name, const char* home, const char* owner, const
char* code, const char* return_var_name, const char* server, int persistent, const char* workgroup_code

)

Purpose
This function is used to compose an agent from source code.

Return Value
The function returns a valid agent on success and NULL otherwise.

Parameters
name The name to assign to the new agent.
home The home of the new agent.
owner The owner of the new agent.
code The agent C/C++ code.
return_var_name (optional) The name of the agent’s return variable.
server The name of the destination server to send the agent.
persistent Whether or not the created agent should be persistent.

workgroup_code (optional) The workgroup code of the agent. Only agents with matching work-
group codes are allowed to interact with each other.

Description
This function is used to create an agent C/C++ source code. Please note that this function is deprecated.

Please use the MC_ComposeAgentWithWorkgroup () function instead.
Example

#include <stdio.h>
#include <string.h>
#include <libmc.h>

MCAgent_t makeAgent (int local_port, charx filename, char* agentName)
{

MCAgent_t agent;

char code[20000]1={0};

char address[100];

FILE+x fptr;

fptr = fopen(filename,"r");

fread(code, 1, 20000, fptr);

fclose (fptr);

sprintf (address, "monkey.engr.ucdavis.edu:%d", local_port);
agent = MC_ComposeAgent (agentName, address,

"monkey.engr.ucdavis.edu", code, NULL, address, 0);
return agent;

152

int main(int argc, charxx argv) ({
MCAgency_t agency;
MCAgent_t agent;
MCAgencyOptions_t options;
int local_port = 5050;

if (argc == 2) local_port = atoi(argv[l]);
MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /x Turn off command prompt =*/

agency = MC_Initialize(local_port, &options);
printf ("\n-—-—- FIPA COMM TEST —----\n\n");
agent = makeAgent (local_port, "listener.c", "listener");

MC_AddAgent (agency, agent);

if (MC_MainLoop (agency) != 0) {
MC_End (agency) ;
return -1;

return 0;

See Also
MC_ComposeAgent (), MC_ComposeAgentFromFile ()

153

MC_ComposeAgentWithWorkgroup()

Synopsis

#include <libmc.h>

MCAgent_t MC_ComposeAgentWithWorkgroup(const char* name, const char* home, const char*
owner, const char* code, const char* return_var_name, const char* server, int persistent, const
char* workgroup_code);

Purpose
This function is used to compose an agent from source code.

Return Value
The function returns a valid agent on success and NULL otherwise.

Parameters
name The name to assign to the new agent.
home The home of the new agent.
owner The owner of the new agent.
code The agent C/C++ code.
return_var_name (optional) The name of the agent’s return variable.
server The name of the destination server to send the agent.
persistent Whether or not the created agent should be persistent.

workgroup_code (optional) The workgroup code of the agent. Only agents with matching work-
group codes are allowed to interact with each other.

Description

This function is used to create an agent C/C++ source code.
Example

#include <stdio.h>
#include <string.h>
#include <libmc.h>

MCAgent_t makeAgent (int local_port, charx filename, charx agentName)
{
MCAgent_t agent;
char code[20000]={0};
char address[100];
FILE* fptr;

fptr = fopen(filename,"xr");
fread(code, 1, 20000, fptr);
fclose (fptr);

sprintf (address, "monkey.engr.ucdavis.edu:%d", local_port);
agent = MC_ComposeAgent (agentName, address,

"monkey.engr.ucdavis.edu", code, NULL, address, 0);
return agent;

154

int main(int argc, charx* argv) {
MCAgency_t agency;
MCAgent_t agent;
MCAgencyOptions_t options;
int local_port = 5050;

if (argc == 2) local_port = atoi(argv[l]);

MC_InitializeAgencyOptions (&options);

MC_SetThreadOff (&options, MC_THREAD_CP); /% Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);

printf ("\n---- FIPA COMM TEST ----\n\n");

agent = makeAgent (local_port, "listener.c", "listener");
MC_AddAgent (agency, agent);

if (MC_MainLoop (agency) != 0) {
MC_End (agency) ;
return -1;

return 0;

See Also
MC_ComposeAgent (), MC_ComposeAgentFromFile ()

155

MC_ComposeAgentFromFile()

Synopsis

#include <libmc.h>

MCAgent_t MC_ComposeAgentFromFile(const char* name, const char* home, const char* owner,
const char* filename, const char* return_var_name, const char* server, int persistent);

Purpose
This function is used to compose an agent from a source code file.

Return Value
The function returns a valid agent on success and NULL otherwise.

Parameters
name The name to assign to the new agent.
home The home of the new agent.
owner The owner of the new agent.
filename The file name containing agent C/C++ code.
return_var_name (optional) The name of the agent’s return variable.
server The name of the destination server to send the agent.
persistent Whether or not the created agent should be persistent.
Description
This function is used to create an agent C/C++ source code.
Example

#include <stdio.h>
#include <string.h>
#include <libmc.h>

int main(int argc, charxx argv) ({
MCAgency_t agency;
MCAgent_t agent;
MCAgencyOptions_t options;
int local_port = 8866;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&§options, MC_THREAD_CP); /x Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);

printf ("\n-—-—- FIPA COMM TEST —----\n\n");

printf ("Loading listener agent\n");
agent = MC_ComposeAgentFromFile (
"listen",
"127.0.0.1:8866",
"localhost",
"agents/listener.c",
NULL,
"127.0.0.1:8866",
0);
MC_AddAgent (agency, agent);

156

#fifndef _WIN32
sleep(1l);
#else
Sleep (1000);
#endif

printf ("\nLoading talker agent\n");
agent = MC_ComposeAgentFromFile (
"talk",
"127.0.0.1:8866",
"localhost",
"agents/talker.c",
NULL,
"127.0.0.1:8866",
0);
MC_AddAgent (agency, agent);

if (MC_MainLoop (agency) != 0) {

MC_End (agency) ;
return -1;

return 0;

}

See Also
MC_ComposeAgentFromFileS (), MC_ComposeAgent ()

157

MC,ComposeAgentFromFileS() [Deprecated]

Synopsis

#include <libmc.h>

MCAgent_t MC_ComposeAgentFromFileS(const char* name, const char* home, const char* owner,
const char* filename, const char* return_var_name, const char* server, int persistent, const char*
workgroup_code);

Purpose
This function is used to compose an agent from a source code file.

Return Value
The function returns a valid agent on success and NULL otherwise.

Parameters
name The name to assign to the new agent.
home The home of the new agent.
owner The owner of the new agent.
filename The file name containing agent C/C++ code.
return_var_name (optional) The name of the agent’s return variable.
server The name of the destination server to send the agent.
persistent Whether or not the created agent should be persistent.

workgroup_code (optional) The workgroup code of the agent. Only agents with matching work-
group codes are allowed to interact with each other.

Description
This function is used to create an agent C/C++ source code. Please note that this function is deprecated.

Please use the MC_ComposeAgentFromFileWithWorkgroup () function instead.
Example

#include <stdio.h>
#include <string.h>
#include <libmc.h>

int main(int argc, charxx argv) ({
MCAgency_t agency;
MCAgent_t agent;
MCAgencyOptions_t options;
int local_port = 8866;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (¢§options, MC_THREAD_CP); /x Turn off command prompt =x/
agency = MC_Initialize(local_port, &options);

printf ("\n---- FIPA COMM TEST —----\n\n");

printf ("Loading listener agent\n");
agent = MC_ComposeAgentFromFile (
"listen",
"127.0.0.1:8866",
"localhost™",

158

"agents/listener.c",
NULL,
"127.0.0.1:8866",
0);
MC_AddAgent (agency, agent);

#ifndef _WIN32
sleep(l);
felse
Sleep (1000);
fendif

printf ("\nLoading talker agent\n");
agent = MC_ComposeAgentFromFile (
"talk",
"127.0.0.1:8866",
"localhost™",
"agents/talker.c",
NULL,
"127.0.0.1:8866",
0);
MC_AddAgent (agency, agent);

if (MC_MainLoop (agency) !'= 0) {

MC_End (agency) ;
return -1;

return 0;

}

See Also
MC_ComposeAgentFromFile (), MC_ComposeAgent ()

159

MC_ComposeAgentFromFileWithWorkgroup()

Synopsis

#include <libme.h>

MCAgent_t MC_ComposeAgentFromFileWithWorkgroup(const char* name, const char* home, const
char* owner, const char* filename, const char* return_var_name, const char* server, int persistent,
const char® workgroup_code);

Purpose
This function is used to compose an agent from a source code file.

Return Value
The function returns a valid agent on success and NULL otherwise.

Parameters
name The name to assign to the new agent.
home The home of the new agent.
owner The owner of the new agent.
filename The file name containing agent C/C++ code.
return_var_name (optional) The name of the agent’s return variable.
server The name of the destination server to send the agent.
persistent Whether or not the created agent should be persistent.

workgroup_code (optional) The workgroup code of the agent. Only agents with matching work-
group codes are allowed to interact with each other.

Description

This function is used to create an agent C/C++ source code.
Example

#include <stdio.h>
#include <string.h>
#include <libmc.h>

int main(int argc, charx* argv) {
MCAgency_t agency;
MCAgent_t agent;
MCAgencyOptions_t options;
int local_port = 8866;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&§options, MC_THREAD_CP); /x Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);

printf ("\n---- FIPA COMM TEST ----\n\n");

printf ("Loading listener agent\n");
agent = MC_ComposeAgentFromFile (
"listen",
"127.0.0.1:8866",
"localhost™",
"agents/listener.c",

160

NULL,
"127.0.0.1:8866",
0);

MC_AddAgent (agency, agent);

#ifndef _WIN32
sleep(l);
felse
Sleep (1000);
fendif

printf ("\nLoading talker agent\n");
agent = MC_ComposeAgentFromFile (
"talk",
"127.0.0.1:8866",
"localhost™",
"agents/talker.c",
NULL,
"127.0.0.1:8866",
0);
MC_AddAgent (agency, agent);

if (MC_MainLoop (agency) != 0) {

MC_End (agency) ;
return -1;

return 0;

}

See Also
MC_ComposeAgentFromFile (), MC_ComposeAgent ()

161

MC_CondBroadcast()

Synopsis
#include <libmc.h>
int MC_CondBroadcast(MCAgency_t agency, int id);

Purpose
Signal all mobile agents and threads which are waiting on a condition variable.

Return Value
This function returns O if the condition variable is successfully found and signalled. It returns non-zero if
the condition variable was not found.

Parameters
agency A Mobile-C agency handle.
id The id of the condition variable to signal.

Description

This function is used to signal all other mobile agents and threads that are waiting on a Mobile-C condition
variable. The function that calls MC_CondBroadcast() must know beforehand the id of the condition vari-
able which a mobile agent might be waiting on.

Example
Please see Program |25 on page 59|and Program in Chapter|[I1]
See Also

MC_CondDelete(), MC_CondInit(), MC_CondSignal().

162

MC_CondReset()

Synopsis
#include <libmc.h>
int MC_CondReset(MCAgency_t agency, int id);

Purpose
Reset’s a Mobile-C condition variable so that it may be used with MC_CondWait() again.

Return Value
This function returns 0 upon success or non-zero if the condition variable was not found.

Parameters

agency A Mobile-C agency.
id The id of the condition variable to signal.

Description
This function reset’s a Mobile-C condition variable, setting it back to unsignalled status.
Example

Please see Program in Chapter
See Also

MC_CondDelete(), MC_CondlInit(), MC_CondSignal(),
MC_CondReset().

163

MC_CondSignal()

Synopsis
#include <libmc.h>
int MC_CondSignal(int ¢d);

Purpose
Signal another mobile agent which is waiting on a condition variable.

Return Value
This function returns 0 if the condition variable is successfully found and signalled. It returns non-zero if
the condition variable was not found.

Parameters
id The id of the condition variable to signal.

Description

This function is used to signal another mobile agent or thread that is waiting on a Mobile-C condition vari-
able. The function that calls MC_CondBroadcast() must know beforehand the id of the condition variable
which a mobile agent might be waiting on.

Example
Please see Program [25 on page 59|and Program in Chapter
See Also

MC_CondDelete(), MC_CondInit(), MC_CondBroadcast().

164

MC_CondWait()

Synopsis
#include <libmc.h>
int MC_CondWait(MCAgency_t agency, int id);

Purpose
Cause the calling mobile agent or thread to wait on a Mobile-C condition variable with the id specified by
the argument.

Return Value
This function returns 0 upon successful wakeup or non-zero if the condition variable was not found.

Parameters

agency A Mobile-C agency.
id The id of the condition variable to signal.

Description
This function blocks until the condition variable on which it is waiting is signalled. If an invalid id is
specified, the function returns 1 and does not block. The function is designed to enable synchronization
possibilities between threads and mobile agents without using poll-waiting loops.

Note that if the same condition variable is to be used more than once, the function MC_CondReset()
must be called on the condition variable.

Example
Please see Program in Chapter [T]
See Also

MC_CondDelete (), MC_CondInit (), MC_CondSignal (),
MC_CondWait () .

165

MC_CopyAgent()

Synopsis
#include <libmc.h>
int MC_CopyAgent(MCAgent_t agent_out, MCAgent_t* agent_in);

Purpose
Copies an agent.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agent_ouh copied agent.

agent_inThe agent to copy.

Description
This function is used to perform a deep copy on an Mobile-C agent. It is useful in conjunction with functions
that retrieve agents from agencies, since those functions only retrieve a reference to the agent: Not a full

copy.
Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
int main ()
{
MCAgency_t agencyl;
MCAgency_t agency?2;
MCAgencyOptions_t options;
int 1i;
int portl = 5051;
int port2 = 5052;

MCAgent_t agent;
MCAgent_t agent_copy;

MC_InitializeAgencyOptions (&options);

/+ We want _all_ the threads on: EXCEPT, the command prompt thread =/
for (i = 0; i < MC_THREAD_ALL; i++) {
MC_SetThreadOn (&options, 1i);
}
MC_SetThreadOff (&§options, MC_THREAD_CP); /x Turn off command prompt =*/

agencyl = MC_Initialize(
portl,
&options);

agency2 = MC_Initialize(

166

portz,
&options);

while (1) |
agent = MC_WaitRetrieveAgent (agencyl);
MC_CopyAgent (&agent_copy, agent);
MC_SetAgentStatus (agent_copy, MC_WAIT_CH);
MC_AddAgent (agency2, agent_copy) ;
MC_ResetSignal (agencyl);

return 0;

See Also

167

MC _DeleteAgent()

Synopsis
#include <libme.h>
int MC DeleteAgent(MCAgent_t agent);

Purpose
Delete a mobile agent from an agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agent An initialized mobile agent.

Description
This function halts and marks an agent for removal from an agency. This function completely eliminates the
agent, even if the agent has remaining unfinished tasks.

Example

See Also
MC_AddAgent()

168

MC _DeregisterService()

Synopsis
#include <libmc.h>
int MC DeregisterService(MCAgency_t agency, int agentID, char* serviceName);

Purpose
Deregisters an agent service from an agency Directory Facilitator.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency An initialized agency handle to add an agent to.
agentl D An agent id.

serviceName The service name to deregister.

Description
This function is used to deregister a service associated with an agent from an agency. The function searches

for a service matching the provided service name and agent id and deregisters it from the Directory Facili-
tator.

Example

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>agent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051" persistent="1" >
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>

int main ()

{

int 1i;
charxx services;
services = (charx*)malloc (sizeof (charx) =* 2);
for (i = 0; i < 2; i++) {
services[i] = (charx)malloc(sizeof (char) *30);

}
strcpy (services[0], "agentl_service");
strcpy (services[1l], "agentl_bonus_service");

169

mc_RegisterService (

mc_current_agent,
services,
2

)
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also

mc_DeregisterService(), MC_RegisterService().

170

MC _End()

Synopsis
#include <libmc.h>
int MC_End(MCAgency_t agency);

Purpose
Terminate a Mobile-C agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency A handle to a running agency.

Description
This function stops all the running threads in an agency and deallocates all the memories regarding an
agency.

Example

/* File: hello_world/client.c x/

#include <stdio.h>
#include <stdlib.h>
#include <libmc.h>

int main ()

{
MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
int local_port=5050;

MC_InitializeAgencyOptions (&options);
//MC_SetThreadOff (&options, MC_THREAD_CP); /x Turn off command prompt =*/

agency = MC_Initialize(local_port, &options);

agent = MC_ComposeAgentFromFile (

"mobagentl", /* Name */

"localhost:5050", /% Home =*/

"IEL", /* Owner =/

"hello_world.c", /% Filename =/

NULL, /+* Return var name. NULL for no return =/
"localhost:5051", /* Server to execute task on =/

0); /* Persistent. 0 for no persistence. x/

/+ Add the agent to the agency to start it =/
MC_AddAgent (agency, agent);

MC_MainLoop (agency) ;

MC_End (agency) ;
exit (0);

171

}

See Also

172

MC FindAgentByID()

Synopsis
#include <libmc.h>
MCAgent_t MC_FindAgentByID(MCAgency_t agency, int id);

Purpose
Find a mobile agent by its ID number in a given agency.

Return Value
The function returns an MCAgent_t object on success or NULL on failure.

Parameters
agency An agency handle.
id An integer representing a mobile agent’s ID number.

Description
This function is used to find and retrieve a pointer to an existing running mobile agent in an agency by the
mobile agent’s ID number.

Example

This function is equivalent to the agent-space version. Please see the example for mc_FindAgentByID()
listed on page

See Also

MC_FindAgentByName()

173

MC_FindAgentByName()

Synopsis
#include <libmc.h>
MCAgent_t MC_FindAgentByName(MCAgency_t agency, const char *name);

Purpose
Find a mobile agent by its name in an agency.

Return Value
The function returns an MCAgent_t object on success or NULL on failure.

Parameters
agency An agency handle.

name A character string containing the mobile agent’s name.

Description
This function is used to find and retrieve a pointer to an existing running mobile agent in an agency by the
mobile agent’s given name.

Example

#include <libmc.h>
#include <embedch.h>
#include <stdio.h>

int main ()

{
MCAgency_t agency;
MCAgent_t agent;
int retval;
MCAgencyOptions_t options;
int local_port=5051;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =/

/+ Init the agency x/

agency = MC_Initialize(
local_port,
&options);

printf ("Please press ’'enter’ once the sample agent has arrived.\n");
getchar();
agent = MC_FindAgentByName (agency, "mobagentl");

if (agent == NULL) {
printf ("Could not find agent!\n");
exit (0);

}

/* The following executution of code may be performed two different
ways: The first way, which is commented out in this example,
involves retrieving the agent’s interpreter with
MC_GetAgentExecEngine () and using the Embedded Ch api to call

174

the function. The second method involves using the Mobile-C
api to call the function. Both of these methods used here produce
identical results. =/
MC_CallAgentFunc (
agent,
"hello",
&retval,
2, /% Num Arguments x/
5/
T

printf ("Value of %d was returned.\n", retval);

/+ End the persistent agent */
MC_DeleteAgent (agent) ;

MC_End (agency) ;
return 0;

See Also
MC_FindAgentByID()

175

MC_GetAgentArrivalTime()

Synopsis
#include <libmc.h>
time_t MC_GetAgentArrivalTime(MCAgent_t agent);

Purpose
Get the agent’s arrival time.

Return Value

This function returns a valid t ime_t type variable under unix, or a valid SYSTEMTIME type variable under
Microsoft Windows.

Parameters

agent An initialized mobile agent.

Description
Each agent that arrives at an agency keeps a record of the system time at the point at which is arrives. This
API function is used to access that data.

Example

See Also

176

MC_GetAgentExecEngine()

Synopsis
#include <libmc.h>
Chlinterp_t MC_GetAgentExecEngine(MCAgent_t agent);

Purpose
Get the AEE associated with a mobile agent in an agency.

Return Value
The functions returns a Ch interpreter on success and NULL on failure.

Parameters
agent A valid mobile agent.

Description

This function is used to retrieve a Ch interpreter from a mobile agent. The mobile agent must be a valid
mobile agent that has not been terminated at the time of this function call. The Ch interpreter may be used
by the Embedded Ch API to execute functions, retrieve data, and other various tasks.

Example

#include <libmc.h>
#include <embedch.h>
#include <stdio.h>

int main ()

{
MCAgency_t agency;
MCAgent_t agent;
int retval;
MCAgencyOptions_t options;
int local_port=5051;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =/

/+ Init the agency x/

agency = MC_Initialize(
local_port,
&options);

printf ("Please press ’‘enter’ once the sample agent has arrived.\n");
getchar();
agent = MC_FindAgentByName (agency, "mobagentl");

if (agent == NULL) {
printf ("Could not find agent!'\n");
exit (0);

}

/* The following executution of code may be performed two different
ways: The first way, which is commented out in this example,
involves retrieving the agent’s interpreter with

177

MC_GetAgentExecEngine () and using the Embedded Ch api to call
the function. The second method involves using the Mobile-C
api to call the function. Both of these methods used here produce
identical results. */
MC_CallAgentFunc (

agent,

"hello",

&retval,

2, /% Num Arguments x/

5/

T);

printf ("Value of %d was returned.\n", retval);

/+ End the persistent agent =*/
MC_DeleteAgent (agent) ;

MC_End (agency) ;
return 0;

See Also
MC_CallAgentFunc()

178

MC_GetAgentID()

Synopsis
#include <libmc.h>
int MC_GetAgentID(MCAgent_t agent);

Purpose
Get an agent’s ID.

Return Value
This function returns an agent’s ID.

Parameters
agent An initialized mobile agent.

Description
Every agent that arrives at an agency is given an agency-unique identification number. This function re-
trieves that number.

Example

<?xml version="1.0"7?>

<!DOCTYPE myMessage SYSTEM "mobilec.dtd">
<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>service_provider_2</NAME>
<OWNER>IEL</OWNER>
<HOME>10.0.0.11:5050</HOME>
<TASK task="1" num="0">
<DATA persistent="1"
number_of_elements="0"
name="no-return"
complete="0"
server="10.0.0.15:5050">
</DATA>
<AGENT_CODE>
<! [CDATA[
#define BR_IRGAIN 10
#define fwSpeed 50

int Connections_A[9] = {5, 1, 2, 5, -15, -6, -2, 2, 7};
int Connections_BI[9] = {2, -2, -6, -15, 5, 2, 1, 5, 7};

struct Robot {
int tabsens[9];
int left_speed;
int right_speed;
bi

int RobotBehaviour (struct Robot xsystem) {

179

long int lspeedl6, rspeedlb;

int 1i;
lspeedl6 = 0;
rspeedl6 = 0;

for (i=0; 1i<9; i++) {

lspeedl6 -= Connections_B[i] % system->tabsens[i];
rspeedl6 -= Connections_A[i] x system->tabsens[i];
}
system->left_speed = ((lspeedl6 / BR_IRGAIN) + fwSpeed);
system->right_speed = ((rspeedl6 / BR_IRGAIN) + fwSpeed);

if (system.left_speed > 0 && system.left_speed < 30)
system.left_speed = 30;

if (system.left_speed < 0 && system.left_speed > -30)
system.left_speed = -30;

if (system.right_speed > 0 && system.right_speed < 30)
system.right_speed = 30;

if (system.right_speed < 0 && system.right_speed > -30)

system.right_speed = -30;

if (system.left_speed > 60 || system.left_speed < -60)
system.left_speed = 0;

if (system.right_speed > 60 || system.right_speed < -60)

system.right_speed = 0;

return 0;

int main(int arc, char =xargv([]) {
char **service;
int num = 1, i, agent_id, mutex_id = 55;

MCAgent_t agent;

service = (char x*)malloc (sizeof (char =*)*num);
for (1i=0; i<num; i++) {

service[i] = (char *)malloc(sizeof (char) *20);
}

strcpy (service[0], "RobotBehaviour");

agent = mc_FindAgentByName ("service_provider_1");
agent_id = mc_GetAgentID (agent);

mc_MutexLock (mutex_id) ;

mc_DeregisterService (agent_id, service[0]);
mc_RegisterService (mc_current_agent, service, num);
mc_MutexUnlock (mutex_id) ;

printf ("Service provider 2 has arrived.\n");
printf ("Services provided:\n");
for (1i=0; i<num; i++) {

printf ("$s\n", service[i]);

for (i=0; i<num; 1i++) {
free (servicel[i]);
}

free (service);

180

return 0;

11>
</AGENT_CODE>
</TASK>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also

MC_GetAgentName().

181

MC_GetAgentName()

Synopsis
#include <libme.h>
int MC_GetAgentName(MCAgent_t agent);

Purpose
Get an agent’s name.

Return Value
This function returns an agent’s name.

Parameters
agent An initialized mobile agent.

Description
This function returns an agent’s name. All agents have a self defined descriptive name that may not be
unique. This function gets the name of an agent.

Example

See Also
MC_GetAgentID().

182

MC_GetAgentNumTasks()

Synopsis
#include <libmc.h>
int MC_GetAgentNumTasks(MCAgent_t agent);

Purpose
Return the total number of tasks a mobile agent has.

Return Value
This function returns a non negative integer on success and a negative integer on failure.

Parameters
agent A MobileC agent.

Description
This function returns the total number of tasks that an agent has. It counts all tasks: those that have been
completed, those that are in progress, and those that have not yet started.

Example

int i;
MCAgent_t agent;

/* More code here =%/

i = MC_GetAgentNumTasks (agent) ;
printf ("The agent has %d tasks.\n", 1i);

The previous piece of code retrieves the nuber of tasks that an agent has and prints it to standard output.

See Also

183

MC_GetAgentReturnData()(peprecated]

Synopsis
#include <libmc.h>
int MC_GetAgentReturnData(MCAgent_t agent, int task_num, void** data, int* dim, int** extent);

Purpose
Retrieve the data from a return mobile agent.

Return Value
The function returns O on success and non-zero otherwise.

Parameters

agent A returning agent.

task_num The task for which the return data is to be retrieved.

data A pointer to hold an array of data.

dim An integer to hold the dimension of the array.

extent A pointer to hold an array of extents for each dimension of the data array.
Description

This function is used to retrieve the return data of a mobile agent. Mobile agents may return single data
values as well as multidimensional arrays of int, float, or double type. The first two arguments, agent and
task_num, are input arguments which specify which mobile agent and task for which to retrieve data. The
next three arguments are unallocated pointers which are modified by the function. The mobile agent’s return
data are stored as a single list of values in data. The dimension of the array is stored into di¢m, and the size
of each dimension is stored into extent.

Please note that this function is deprecated. Please use the MC_AgentReturnx () series of functions
instead.
Example

MCAgent_t agent;
MCAgency_t agency;
double =*data;

int dim;

int *extent;

int i;

int elem;

/* Agency initialization code here x/

agent = MC_FindAgentByName (agency, "ReturnAgent");
MC_GetAgentReturnData (agent, 0, &data, &dim, &extent);
elem = 1;
for (1i=0; i<dim; 1i++) {

printf ("dim %d has %d size.\n", i, extent[i]);

184

elem *= extent[i];

}

printf ("There are %d total elements in the multidimensional array.\n", elem);

The above code prints the dimension and extent of each dimension of the return data held by the agent. It
only prints the data of the first task, as indicated by the second argument of function MC_GetAgentReturnData(),
which is 0 in this example.

See Also

MC_AgentReturnDataGetSymbolAddr (), MC_AgentReturnArrayDim (), MC_AgentReturnArrayExter
MC_AgentReturnDataSize (), MC_AgentReturnArrayNum ()

185

MC_GetAgentStatus()

Synopsis
#include <libmc.h>
int MC_GetAgentStatus(MCAgent_t agent);

Purpose
Get the status of a mobile agent in an agency.

Return Value
The return value is of an enumerated type, “enum MC_AgentStatus_e”. The enum may be seen in Table [A.3

The values are

0, MC_WAIT_CH : Mobile agent is currently waiting to be executed.

1, MC_WAIT_MESSGSEND : Mobile agent is currently waiting to be exported to another agency.

2, MC_AGENT_ACTIVE : Mobile agent is currently being executed.

3, MC_AGENT_NEUTRAL : Mobile agent is waiting for an unspecified reason.

4 , MC_AGENT_SUSPENDED : Mobile agent is currently being suspended.

5, MC_WAIT_FINISHED : Mobile agent has finished execution and is waiting for removal.
Parameters

agent The mobile agent from which to retrieve status information.

Description
This function gets a mobile agent’s status. The status is used to determine the mobile agent’s current state
of execution.

Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
fendif
int main ()
{
MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
char *str;
int 1i;
int local_port=5051;

MC_InitializeAgencyOptions (&options);
for (i = 0; i < MC_THREAD_ALL; i++) {

MC_SetThreadOn (&options, 1);

}
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off the command prompt =*/

186

agency = MC_Initialize(
local_port,
&options) ;

MC_ResetSignal (agency) ;

/+ Retrieve the first arriving agent =/

/+ Note: MC_WaitRetrieveAgent () pauses the agency: We’ll need to unpause

* it later with MC_SignalReset () =/

agent = MC_WaitRetrieveAgent (agency) ;
if (agent != NULL)
{
printf ("The agent status is: %d\n", MC_GetAgentStatus (agent));
printf ("This agent has %d task(s).\n", MC_GetAgentNumTasks (agent));
str = MC_GetAgentXMLString (agent) ;
printf ("Agent XML String:\n%s\n", str);
free(str);
str = MC_RetrieveAgentCode (agent) ;
printf ("Agent Code:\n%$s\n", str);
free(str);
MC_ResetSignal (agency) ;
MC_MainLoop (agency) ;
}
else
printf ("Error: returned NULL pointer for agent.\n");

return 0;

See Also

187

MC_GetAgentType()

Synopsis
#include <libmc.h>
enum MC_AgentType_e MC_GetAgentType(MCAgent_t agent);

Purpose
This function blocks until one of a specified number of signals is signalled.

Return Value
This function returns an enumerated value of type MC_AgentType_e.

Parameters
agency A handle associated with a running agency.
stgnals A combination of signals specified by the enum MC_Signal e.

Description

This function is used to determine the type of agent that input argument ’agent’ is. It is useful for use in
determining if the agent is an active agent of type " MOBILE_AGENT”, or a return agent containing return
data of type 'RETURN_AGENT".

Example

MCAgent_t agent;
enum MC_AgentType_e type;

/+* Code here which assign an agent to variable ’'agent’ =/
type = MC_GetAgentType (agent) ;
switch (type) {
case MOBILE_AGENT:
printf ("Received a mobile agent.\n");
break;
case RETURN_AGENT:
printf ("Received a return agent.\n");
break;
default:
printf ("Received an agent of other type.\n");
break;

}

The above code determines whether a mobile agent is a return agent or a normal agent to be executed, and
prints the result to the standard output.

See Also

188

MC_GetAgentXMLString()

Synopsis
#include <libmc.h>
char *MC_GetAgentXMLString(MCAgent_t agent);

Purpose
Retrieve a mobile agent message in XML format as a character string.

Return Value
The function returns an allocated character array on success and NULL on failure.

Parameters
agent The mobile agent from which to retrieve the XML formatted message.

Description
This function retrieves a mobile agent message in XML format as a character string. The return pointer is
allocated by *malloc()’ and must be freed by the user.

Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
felse
#include <unistd.h>
fendif
int main ()
{
MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
char =str;
int 1i;
int local_port=5051;

MC_InitializeAgencyOptions (&options);

for (i = 0; i < MC_THREAD_ALL; i++) {
MC_SetThreadOn (&options, 1i);
}
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off the command prompt =*/

agency = MC_Initialize(
local_port,
&options);
MC_ResetSignal (agency) ;
/+ Retrieve the first arriving agent =/
/* Note: MC_WaitRetrieveAgent () pauses the agency: We’ll need to unpause
* it later with MC_SignalReset () =/
agent = MC_WaitRetrieveAgent (agency) ;
if (agent != NULL)

189

{

printf ("The agent status is: %d\n", MC_GetAgentStatus (agent));
printf ("This agent has %d task(s).\n", MC_GetAgentNumTasks (agent));
str = MC_GetAgentXMLString (agent) ;

printf ("Agent XML String:\n%s\n", str);

free(str);

str = MC_RetrieveAgentCode (agent) ;

printf ("Agent Code:\n%$s\n", str);

free(str);

MC_ResetSignal (agency) ;

MC_MainLoop (agency) ;

}

else

printf ("Error: returned NULL pointer for agent.\n");

return 0;

See Also

190

MC_GetAgents()

Synopsis
#include <libmc.h>
int MC_GetAgents(MCAgency _t agency, MCAgent_t** agents, int* num_agents, unsigned int agent_status_flags);

Purpose
Retrieve an array agents currently registered on an agency. The types of agents to retrieve are filtered by the
function argument agent _status_flags.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency An initialized agency handle to get agents from.
agents The address of a MCAgent _t * type variable.
num-_agents A place to store the number of returned agents.

agent_status_flags Agent status flags to filter the search results.

Description

This function returns a filtered list of agents currently residing on an agency. The filter is based on agent
statuses, which are enumerated by the enum type MC_AgentStatus_e. For instance, to obtain a list of
agents which have an agent status of MC_AGENT_ACTIVE or MC_AGENT_NEUTRAL, the user may set the

agent_status_flagtoavalue of ((1<<MC_AGENT_ACTIVE) | (1<<MC_AGENT_NEUTRAL)).
Example

#include <stdio.h>
#include <stdlib.h>
#include <libmc.h>
#define TotalMA 2

int main ()
{
MCAgency_t agency;
MCAgent_t agent;
MCAgent_t* agents;
int num_agents;
MCAgencyOptions_t options;
int my_port = 5125;
int dim, 1i;
const double =xdata;
char *name;
MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =*/
agency = MC_Initialize (my_port, &options);
/* Note: The third argument of the following function may also be a
valid IP address in the form of a string. i.e. 192.168.0.1 «/
/+ Sending to first host =*/
MC_SendAgentFile (agency, "testl.xml");
/* Sending to second host =*/
MC_SendAgentFile (agency, "test2.xml");
MC_SendAgentFile (agency, "test3.xml");

191

/+ Wait for a few seconds for agents to return =/
printf ("Waiting for agents to return...\n");
#ifdef _WIN32
Sleep (3000);
#else
sleep(3);
#endif

/+* Try getting all of the active agents =*/
printf ("Getting active agents...\n");

/+ First lock the agent queue so agents stick around while we print them =/
MC_AgentProcessingBegin (agency) ;
MC_GetAgents (agency, &agents, &num_agents, (1<<MC_AGENT_ACTIVE));
for(i = 0; i < num_agents; i++) {
printf ("Agent name: %s\n", MC_GetAgentName (agents[i]));

free (agents);
/* Try getting all neutral agents =/
printf ("Getting neutral agents...\n");
MC_GetAgents (agency, &agents, &num_agents, (1<<MC_AGENT_NEUTRAL));
for(i = 0; i < num_agents; i++) {
printf ("Agent name: %s\n", MC_GetAgentName (agents[i]));
}
/+ Agent processing done */
MC_AgentProcessingEnd (agency) ;

MC_End (agency) ;
exit (0);

See Also
MC_GetAgent().

192

MC_GetAllAgents()

Synopsis
#include <libmc.h>
int MC_GetAllAgents(MCAgency_t agency, MCAgent_t** agents, int* num_agents);

Purpose
Retrieve an array of all agents currently registered on an agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency An initialized agency handle to get agents from.
agents The address of a MCAgent_t » type variable.

Description
This function will allocate and fill an array with handles to agents which currently reside in an agency. All
agents will be listed regardless of agent status.

Example

See Also
MC_GetAgent().

193

MC_HaltAgency()

Synopsis
#include <libmc.h>
int MC_HaltAgency(MCAgency_t agency);

Purpose
This function halts the execution of an agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency An initialized agency handle.

Description

This function halts the primary threads of an agency, such as the ACC, AMS, message handlers, etc. If any
thread is busy with a particular task, it will halt as soon as the task is finished. Note that this function does not
halt the execution of any agents which may be performing tasks. Agents performing tasks may not rely on
the primary Mobile-C threads, such as the ACC, AMS, etc., and thus may not halt upon calling this function.

Example

See Also
MC_ResumeAgency().

194

MC _Initialize()

Synopsis
#include <libmc.h>
MCAgency_t MC _Initialize(int port, MCAgencyOptions_t xoptions);

Purpose
Start a Mobile-C agency and return a handle of the launched agency.

Return Value
The function returns an MCAgency _t on success and NULL on failure.

Parameters
port The port number to listen on for incoming mobile agents.
options The address of a structure of type MCAgencyOptions_t for specifying which thread(s) to
be activated in an agency and setting the default agent status for incoming mobile agents.
This variable must be initialized with MC_TnitializeAgencyOptions () before modifi-
cations are made to it.

MCAgencyOptions_t is defined as a structure as the following:

typedef struct MCAgencyOptions_s{

int threads; /*!< Threads to start =*/

int default_agent_status; /=*!< Default agent status =/
int modified; /*!< unused =*/

int enable_security; /+x!< security enable flag =/

unsigned char passphrase([32]; /x!< security enable flag =/

/+ Following are some thread stack size options: unix/pthreads only! =/
int stack_size[MC_THREAD_ALL]; /*!< If the stack size is -1, use system
def.x/
char sknown_host_filename; /* Filename of the known-hosts file (optional) =*/
char *priv_key_filename; /* Filename of the private key file (optional) =x/
int initInterps; /* Default initial number of Ch interpreters to preload =*/
ChOptions_t* ch_options; /* Ch Options for the Embedded Ch Interpreters =/
} MCAgencyOptions_t;

Description
MC_Initialize () starts a Mobile-C agency and returns a handle of type MCAgency_t containing the
information about the current agency.

The MC_Initialize function also accepts an optional argument of type MCAgencyOptions_t
which allows a user to modify which components to start on their Mobile-C agency. The MCAgencyOptions_t
struct must be initialized with the MC_TnitializeAgencyOptions () before modifications are made.

The struct contains the following members:

e int threads; : This member is a bitmasked variable which contains information about which
Mobile-C threads to start upon startup. The bits are organized as such:

195

LSB
31..6 5 4 3 2 1 0

Unused ALL | AG | CP | ACC|AMS| DF

with the following acronyms:

LSB: Least SignificantBit
DF: Directory Facilitator

AMS: Agent Management System

ACC: Agent Communication Channel
— CP: Command Prompt
AG: Agent Threads

A value of “1” in a bitfield tells Mobile-C to enable a particular thread, and a value of “0” informs
Mobile-C not to activate that thread upon startup. A set of enumerations are defined in libmc.h
that define the macros MC_THREAD DF, MC_THREAD_AMS,MC_THREAD _ACC, MC_THREAD_CP,
MC_THREAD_AGENT, each representing the bit position of each thread. There is also a special macro,
MC_THREAD_ALL, which represents the total number of types of threads in a Mobile-C agency. For
instance, to disable the command prompt thread, the following code may be used:

options.threads &= ~ (1 << MC_OPTIONS_CP) ;

where options is a struct of type MCAgencyOptions_t.

Helper functions MC_Set ThreadOn () , MC_SetThreadsAllOn (), MC_SetThreadOff (),
MC_SetThreadsAl1Off () are also provided to modify the threads to start. Please consult their
repsective documentation pages for more information.

e int default_agent_status; : This is the default agent status to assign to all incoming agents.
Valid agent status values are found in 1ibmc.h under the enumeration MC_Agent Status_e. Pos-
sible values are:

— MC_WAIT_CH : This denotes that the agent is waiting for the next available Ch interpereter so
that it may execute. This is the default setting for all incoming agents.

— MC_WAIT_MESSGSEND : This agent status indicates that the agent has finished its local task,
but still has more remote tasks remaining. An agent with this status is waiting to be handled by
the ACC so that it may migrate to the location of its next task.

— MC_AGENT_ACTIVE : This indicates that the agent is currently executing.

— MC_AGENT_NEUTRAL : This indicates that the agent is not executing, but is also not waiting for
service. The agent simply persists in the agency. This option is also a popular default alternative
to MC_WAIT_CH since incoming agents are not executed upon arrival.

— MC_AGENT_FINISHED : This agent status indicates that the agent has finished all of its tasks
and is awaiting to be purged from the agency.

e int modified; : This member field is unused.

196

e int enable_security; : This indicates that the Mobile-C agency should enable the Mobile-C
security processes. This member is off by default.

e unsigned char passphrase[32] : This is a character string a passphrase to decrypt the
agency’s private key. For more details about the Mobile-C security process, please refer to Chap-
ter 121

e int stack_size[MC_THREAD ALL]; : (Unix only) This array of integers holds the stack size
to allocate for each thread. For example, if the programmer knows in advance that all agents the
agency will receive will be small, the programmer may limit the stack size of each agent thread to one
kilobyte with the following line:

options.stack_size[MC_THREAD_AGENT] = 1024;

Care should be taken when modifying stack sizes as it may cause instability in the system.

e char xknown_host_filename; : (Optional) This should point to a filename containing host
names of known and trusted hosts. This file is only used if Mobile-C security is enabled.

e char xpriv_key_filename; : (Optional) This should point to a string containing the filename
of the agency’s private key file. This is only used if Mobile-C security is enabled.

e ChOptions_t* ch_options; : This may be used to modify Ch options for agency interpreters.
Please refer to the Embedded Ch documentation for more information about ChOptions_t.

Example: Starting an agency with default options

/* File: hello_world/server.c =/

#include <stdio.h>
#include <libmc.h>

int main ()
{
MCAgency_t agency;
int local_port = 5051;
setbuf (stdout, NULL);
agency = MC_Initialize(local_port, NULL);
MC_MainLoop (agency) ;
MC_End (agency) ;
return 0;

Example: Starting an agency with no command prompt

/* File: fipa_test/client.c */
#include <stdio.h>

#include <stdlib.h>
#include <libmc.h>

197

int main ()

{
MCAgency_t agency;
MCAgencyOptions_t options;
int local_port=5050;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /x Turn off command prompt =/
agency = MC_Initialize(local_port, &options);

/* Note: The third argument of the following function may also be a
valid IP address in the form of a string. i.e. 192.168.0.1 «/
MC_SendAgentFile (agency, "testl.xml");

printf ("Sending next agent in 3 seconds...\n");
#ifndef _WIN32

sleep(3);
#else

Sleep (3000);
fendif

MC_SendAgentFile (agency, "test2.xml");
MC_End (agency) ;
exit (0);

}

See Also
MC_End()

198

MC _InitializeAgencyOptions()

Synopsis
#include <libmc.h>
int MC InitializeAgencyOptions(struct MCAgencyOptions_s* options);

Purpose
Initialize the agency options structure to default values.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
options An uninitialized reference to a st ruct MCAgencyOptions_s type variable.

Description
This function fills the agency options struct with default values. This function will overwrite any values that
have already been set in the struct.

Example

mc_sample_app.c

This sample program uses the Mobile C library to build
a simple command-line driven client/server app.

12/15/2006
*/

% ok X % X %

#include <libmc.h>
#include <stdio.h>
int main(int argc, char xargvl])
{
MCAgency_t agency;
MCAgencyOptions_t options;
int i;
int local_port=5050;

/+ We want _all_ the threads on: including the command
x prompt thread, which is off by default =/

MC_InitializeAgencyOptions (&options);

/* Turn on all threads.
* Note: This is actually not necessary, since they are all on by default,
* but this code does provide a good example of how to manipulate MobileC
* threads. */
for (i = 0; i < MC_THREAD_ALL; i++) {
MC_SetThreadOn (&options, 1i);

if (argc == 2) {
printf ("Starting agency listening on local_port %d.\n",

199

atoi(argvi[1l]));
agency = MC_Initialize(
atoi(argvi[l]),

&options
)i
} else {
agency = MC_Initialize(
local_port,

&options) ;

MC_End (agency) ;
return 0;

See Also
MC _nitialize().

200

MC _LoadAgentFromFile()

Synopsis
#include <libmc.h>
int MC _LoadAgentFromFile(MCAgency_t agency, const char* filename);

Purpose
Add a mobile agent into a local agency from an XML file.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency An initialized agency handle to add an agent to.
filenamAn xml file containing a MobileC mobile agent.

Description
This function adds a mobile agent to an agency. The agent is loaded from an xml file referenced by the
filename function argument.

Example

#include <stdio.h>
#include <stdlib.h>
#include <libmc.h>

int main ()

{
MCAgency_t agency;
MCAgencyOptions_t options;
int local_port=5050;

MC_TInitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);

/* Note: The third argument of the following function may also be a
valid IP address in the form of a string. i.e. 192.168.0.1 =/
printf ("Sending agent to self...\n");
MC_LoadAgentFromFile (agency,
"agent.xml");
printf ("Done.\n");
MC_MainLoop (agency) ;
exit (0);
}

See Also

201

MC_MainLoop()

Synopsis
#include <libmc.h>
int MC_MainLoop(MCAgency_t agency);

Purpose
Cause the calling thread to wait indefinitely on an agency.

Return Value
If the Mobile-C agency is terminated safely from another thread or agent, the function will return 0. Other-
wise, the function will return a non-zero error code.

Parameters
agency A handle associated with a running agency.

Description

This function will block the calling thread until another thread or agent calls the function MC_End () or
mc_End (), respectively. This function will also stop blocking if the quit command is issued from the
Mobile-C command prompt. It must be run on a handle that is attached to an agency that has already been
started with the function MC_Initialize (). Also note that it is not necessary to call this function to start
a valid Mobile-C agency. All agency threads and services are started upon calling MC_Initialize (),
and MC_MainLoop () is generally only used to prevent the main thread from exiting.

Example

/* File: hello_world/server.c =/

#include <stdio.h>
#include <libmc.h>

int main ()
{
MCAgency_t agency;
int local_port = 5051;
setbuf (stdout, NULL);
agency = MC_Initialize(local_port, NULL);
MC_MainLoop (agency) ;
MC_End (agency) ;
return 0;

}

See Also

202

MC_MigrateAgent()

Synopsis
#include <libmc.h>
int MC_MigrateAgent(MCAgent_t agent, const char* hostname, int port);

Purpose
Instructs an agent to migrate to another host.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agent An initialized mobile agent.
hostname The new host to migrate to.
port The port on the new host to migrate to.
Description

This function instructs an agent to migrate to a new host. The task of the agent is not incremented. The agent
will executed whatever task it was currently on when this function was invoked on the new host. Note that
this function only prepends a task to the agents task list. The agent still needs to finish before the migration
step occurs.

Example

See Also
mc_MigrateAgent()

203

MC _MutexLock()

Synopsis
#include <libmc.h>
int MC_MutexLock(MCAgency_t agency, int id);

Purpose
This function locks a previously initialized Mobile-C synchronization variable as a mutex. If the mutex is
already locked, the function blocks until it is unlocked before locking the mutex and continuing.

Return Value
This function returns 0 on success, or non-zero if the id could not be found.

Parameters

agency The agency in which to find the synchronization variable to lock.
id The id of the synchronization variable to lock.

Description
This function locks the mutex part of a Mobile-C synchronization variable. While this is primarily used to
guard a shared resource, the behaviour is similar to the standard POSIX mutex locking. Note that although a
MobileC synchronization variable may assume the role of a mutex, condition variable, or semaphore, once
a Mobile-C synchronization variable is used as a mutex, it should not be used as anything else for the rest of
its life cycle.

Example
Please see Program in Chapter [T]
See Also

MC_MutexUnlock(), MC_Synclnit(), MC_SyncDelete().

204

MC _MutexUnlock()

Synopsis
#include <libmc.h>
int MC_MutexUnlock(MCAgency _t agency, int id);

Purpose
This function unlocks a locked Mobile-C synchronization variable.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters

agency The agency in which to find the synchronization variable to lock.
id The id of the synchronization variable to lock.

Description

This function unlocks a Mobile-C synchronization variable that was previously locked as a mutex. If the
mutex is not locked while calling this function, undefined behaviour results. Note that although a Mobile-C
may act as a mutex, condition variable, or semaphore, once it has been locked and/or unlocked as a mutex,
it should only be used as a mutex for the remainder of it’s life cycle or unexpected behaviour may result.

Example
Please see Program [28 on page 62]in Chapter[I1]
See Also

MC_MutexLock(), MC_Synclnit(), MC_SyncDelete().

205

MC_PrintAgentCode()

Synopsis
#include <libme.h>
int MC _PrintAgentCode(MCAgent_t agent);

Purpose
Print a mobile agent code for inspection.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agent The mobile agent from which to print the code.

Description
This function prints the mobile agent code to the standard output.

Example

See Also

206

MC_QueueRDLock()
MC_QueueWRLock()
MC_QueueRDUnlock()
MC_QueueWRUnlock()

Synopsis
#include <libmc.h>
int MC_QueueXXLock(MCAgency_t agency, MC_Queuelndex_e queue);

Purpose

These functions lock a Mobile-C data queue for reading or writing.
Return Value

The function returns O on success and non-zero otherwise.

Parameters
agency A handle associated with a running agency.
queue An enumerated value specifying which queue to lock or unlock.

Description
This function locks a queue for reading and writing. The enumerated values for the queue are:
Macro Description
enum MC_Queuelndex_e
MC_QUEUE_MESSAGE The message queue.
MC_QUEUE_AGENT The message queue.
MC_QUEUE_CONNECTION The connection queue.
MC_QUEUE_SYNC The synchronization object queue.
MC_QUEUE_BARRIER The barrier object queue.

The MC_QueueRDLock () function locks a queue for reading. If a queue is locked for reading, other
threads are still able to read from the queue, but no thread will be able to lock the queue for writing. If a
read lock is requested on a queue that is currently write-locked, the function will block until the write-lock
is lifted.

The MC_QueueWRLock () function locks a queue for writing. If other threads currently have read or
write locks on the queue, this function will block until all other readers and writers have released their locks.
At this point the function will attain a write lock on the queue, and no other threads will be able to attain
read or write locks until the locking thread has unlocked the write-lock.

These functions are useful for suspending certain queues, such as the agent queue, to make sure they are
not modified while user-space algorithms are running. If you need to lock the agent queue for processing
with functions such as MC_GetNumAgents (), MC_GetAllAgents (), or similar functions, please use
the MC_AgentProcessingBegin () and MC_AgentProcessingEnd () functions instead.

Note that any queue that is locked by the user should also be unlocked by the user with the corresponding
functions, or the agency will cease to function normally.

Following is a brief summary of the effects of locking each queue.

e The message queue: Locking the message queue will prevent Mobile-C from processing new mes-
sages. Connections will still be accepted, but agent migration message, FIPA-ACL messages, and
other types of messages will not be processed.

207

e The agent queue: Locking the agent queue will prevent Mobile-C from adding or removing agents.
For new agents, agent and message processing is still executed up until the last step where the agent is
to be added to the queue. If you intend to lock this queue to call functions such as MC_GetAl1Agents,
please use the MC_AgentProcessingBegin () function instead.

e The connection queue: Locking this will effectively prevent Mobile-C from processing new connec-
tions.

e The sync queue: Locking this queue for writing will cause all Mobile-C synchronization functions,
such as MC_MutexLock, to block until the queue is unlocked. Locking this queue for reading will
prevent new synchronization nodes from being created.

e The barrier queue: Locking this queue will have similar effects as locking the sync queue, except for
Mobile-C barriers.

Example

208

MC _RegisterService()

Synopsis

#include <libmc.h>

int MC_RegisterService(MCAgency_t agency, MCAgent_t agent, int agentID, const char agentName,
char** serviceNames, int numServices);

Purpose
Registers an agent service with an agency Directory Facilitator.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency An initialized agency handle to add an agent to.
agent (Optional) An initialized mobile agent.
agentlD (Optional) An agent id.

agentName (Optional) An agent name.
serviceNames A list of descriptive names for agent services.
numServices The number of services listed in the previous argument.

Description

This function is used to register agent services with an agency. Among the optional arguments, either a valid
agent must be supplied, or both an agent ID and an agent name. Thus, services may be registered to an agent
which has not yet arrived at an agency by specifying the ID and name of the agent.

Example

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>agent 1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051" persistent="1" >
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>

int main ()

{

int i;
charx* services;
services = (charxx)malloc (sizeof (char*) * 2);

209

for (i = 0; 1 < 2; i++) {
services[i] = (charx)malloc(sizeof (char) *30);
}
strcpy (services[0], "agentl_service");
strcpy (services[1l], "agentl_bonus_service");

mc_RegisterService (
mc_current_agent,
services,
2

)i
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_RegisterService(), MC_DeregisterService().

210

MC _ResetSignal()

Synopsis
#include <libmc.h>
int MC _ResetSignal MCAgency_t agency);

Purpose
This function is used to reset the Mobile-C signalling system. It is intended to be used after returning from
a call to function MC_WaitSignal().

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
agency A handle to a running agency.

Description

This function is used to reset the Mobile-C signalling system. System signals are triggered by certain events
in the Mobile-C library. This includes events such as the arrival of a new message or mobile agent, and
the departure of a mobile agent, etc. If function MC_WaitSignal() is used to listen for one of these events,
function MC _ResetSignal() must be called in order to allow Mobile-C to resume with it’s operations.

Example

/* File: multi_task_example/client.c x/

#include <stdio.h>
#include <libmc.h>

int main ()

{
MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
double xagent_return_value;
int task_num;
int local_port=5050;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);

/* Compose the agent from a task source file */
agent = MC_ComposeAgentFromFile (
"mobagent3", /+ Name =/
"localhost:5050", /* Home - This is the host the agent will return to
* when it has finished its tasks. */

"IEL", /* Owner x/

"taskl.c", /+ Code filename =/
"results_taskl", /* Return Variable Name =*/
"localhost:5051", /* server/destination host =*/
0 /* persistent =/

211

)i

/+ Add one more task =*/
MC_AgentAddTaskFromFile (

agent, /+ Agent handle x/

"task2.c", /+ Task code file name x/
"results_task2", /* Return Variable Name =*/
"localhost:5052", /* server/destination host =*/
0 /* Persistent x/

/+ Add the agent =/
MC_AddAgent (agency, agent);

/+ Wait for return-agent arrival signal =/
MC_WaitSignal (agency, MC_RECV_RETURN) ;

/* Make sure we caught the correct agent =/
agent = MC_FindAgentByName (agency, "mobagent3");

if (agent == NULL) {
fprintf (stderr, "Did not receive correct agent. \n");
exit (1);

task_num = 0; /* Get return value from first task =*/

agent_return_value = (doublex)MC_AgentReturnDataGetSymbolAddr (agent, task_num);
printf ("The return value from the first task is %$1f\n", xagent_return_value);
task_num++; /* Get the return value from the second (and last) task. =*/
agent_return_value = (doublex)MC_AgentReturnDataGetSymbolAddr (agent, task_num);
printf ("The return value from the second task is %1f\n", =*agent_return_value);

/+ We must reset the signal that we previously caught with the
* MC_WaitSignal() function with MC_ResetSignal () =*/
MC_ResetSignal (agency) ;

MC_End (agency) ;
return 0;

See Also
MC_WaitSignal()

212

MC_ResumeAgency()

Synopsis
#include <libmc.h>
int MC_ResumeAgency(MCAgency_t agency);

Purpose
This function resumes the execution of an agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency An initialized agency handle.

Description
This function resumes the operation of the core threads of the Mobile-C agency, such as the ACC, AMS,
etc., after they have been halted by the MC_HaltAgency () function.

Example

See Also
MC_HaltAgency().

213

MC _RetrieveAgent()

Synopsis
#include <libme.h>
MCAgent_t MC_RetrieveAgent(MCAgency_t agency);

Purpose
Retrieve the first neutral mobile agent from a mobile agent list.

Return Value
The function returns an MCAgent_t object on success or NULL on failure.

Parameters
agency An agency handle.

Description
This function retrieves the first agent with status MC_AGENT_NEUTRAL from a mobile agent list. If there
are no mobile agents with this attribute, the return value is NULL.

Example

See Also

214

MC _RetrieveAgentCode()

Synopsis
#include <libmc.h>
char *MC _RetrieveAgentCode(MCAgent_t agent);

Purpose
Retrieve a mobile agent code in the form of a character string.

Return Value
The function returns an allocated character array on success and NULL on failure.

Parameters
agent The mobile agent from which to retrieve the code.

Description
This function retrieves a mobile agent code. The return pointer is allocated by malloc()’ and must be freed
by the user.

Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
felse
#include <unistd.h>
fendif
int main ()
{
MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
char =str;
int 1i;
int local_port=5051;

MC_InitializeAgencyOptions (&options);

for (i = 0; i < MC_THREAD_ALL; i++) {
MC_SetThreadOn (&options, 1i);
}
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off the command prompt =*/

agency = MC_Initialize(
local_port,
&options);
MC_ResetSignal (agency) ;
/+ Retrieve the first arriving agent =/
/* Note: MC_WaitRetrieveAgent () pauses the agency: We’ll need to unpause
* it later with MC_SignalReset () =/
agent = MC_WaitRetrieveAgent (agency) ;
if (agent != NULL)

215

{

printf ("The agent status is: %d\n", MC_GetAgentStatus (agent));
printf ("This agent has %d task(s).\n", MC_GetAgentNumTasks (agent));
str = MC_GetAgentXMLString (agent) ;

printf ("Agent XML String:\n%s\n", str);

free(str);

str = MC_RetrieveAgentCode (agent) ;

printf ("Agent Code:\n%$s\n", str);

free(str);

MC_ResetSignal (agency) ;

MC_MainLoop (agency) ;

}

else

printf ("Error: returned NULL pointer for agent.\n");

return 0;

See Also

216

MC_SearchForService()

Synopsis

#include <libmc.h>

int MC_SearchForService(MCAgency_t agency, char* SearchString, char*** agent Names, char®**
serviceNames, int ** agentIDs,int* numResults);

Purpose
Searches the Directory Facilitator for a service.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters

agency An initialized agency handle.

searchString (in) A search substring. All services names registered with the Directory Facilitator with a
matching substring will be a hit.

agentNames (out) A newly allocated array of agent names of agents that provide services matching the
search string.

serviceNames (out) A newly allocated array of service names matching the search substring.

AgentlDs (out) A newly allocated array of agent IDs of matching agents.

numdServices (out) The number of services listed in the previous argument.

Description
This function is used to search the Directory Facilitator for a service. The function will return all services if
any part of the service name matches the search string.

Example

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>agent 3</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051" persistent="1" >
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>

int main ()
{
int 1i;
char xxagentNames;

217

char xxserviceNames;
int xagentIDs;
int numResults;

mc_SearchForService (
"bonus",
&agentNames,
&serviceNames,
&agentIDs,
&numResults
)i
for (i = 0; 1 < numResults; i++) {
printf ("%s:%d %$s\n",
agentNames[i],
agentIDs[i],
serviceNames[i]

)i

printf ("\n");
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_RegisterService(), MC_DeregisterService().

218

MC_SemaphorePost()

Synopsis
#include <libmc.h>
int MC_SemaphorePost(MCAgency _t agency, int id);

Purpose
This function unlocks one resource from a Mobile-C semaphore, increasing its count by one.

Return Value
This function returns 0 on success, or non-zero if the id could not be found or on a semaphore error.

Parameters

agency The agency in which to find the synchronization variable to lock.
id The id of the synchronization variable to lock.

Description

MC_SemaphorePost unlocks a resourse from a previously allocated and initialized Mobile-C synchroniza-
tion variable being used as a semaphore. This function may be called multiple times to increase the count
of the semaphore up to INT_MAX. Note that although a Mobile-C synchronization variable may be used
as a mutex, condition variable, or semaphore, once it is used as a semaphore, it should only be used as a
semaphore for the remainder of its life cycle.

Example

The MC_SemaphorePost() function usage is very similar to the other binary space synchronization func-
tions. Please see Chapter [I1] on page [56] and the demo at “demos/agent_semaphore_example/” for more
information.

See Also
MC_SemaphoreWait(), MC _Synclnit(), MC_SyncDelete().

219

MC_SemaphoreWait()

Synopsis
#include <libmc.h>
int MC_SemaphoreWait(MCAgency_t agency, int id);

Purpose
This function allocates one resource from a Mobile-C synchronization semaphore variable.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters

agency The agency in which to find the synchronization variable to lock.
id The id of the synchronization variable to lock.

Description

This function allocates one resource from a previously allocated and initialized Mobile-C synchronization
semaphore. If the semaphore resource count is non-zero, the resource is immediately allocated. If the
semaphore resource count is zero, the function blocks until a resource is freed before allocating a resource
and continuing. Note that although a Mobile-C synchronization variable may be used as a mutex, condition
variable, or semaphore, once it is used as a semaphore, it should only be used as a semaphore for the re-
mainder of its life cycle.

Example
The MC_SemaphorePost() function usage is very similar to the other binary space synchronization func-

tions. Please see Chapter [T on page [56] for more information.

See Also
MC_SemaphorePost(), MC_SynclInit(), MC_SyncDelete().

220

MC_SendAgent()

Synopsis
#include <libmc.h>
int MC _SendAgent(MCAgency_t agency, char *message);

Purpose

Send an ACL mobile agent message to a remote agency.
Return Value

The function returns O on success and non-zero otherwise.

Parameters
agency A handle associated with an agency from which to send the ACL mobile agent message.
A NULL pointer can be used to send the ACL message from an unspecified agency.
message The ACL mobile agent message to be sent.
Description

This function is used to send an XML based ACL mobile agent message, which is a string, to a remote
agency.

Example

See Also

221

MC_SendAgentFile()

Synopsis
#include <libmc.h>
int MC _SendAgentFile(MCAgency_t agency, char * filename);

Purpose

Send an ACL mobile agent message saved as a file to a remote agency.
Return Value

The function returns 0 on success and non-zero otherwise.

Parameters
agency A handle associated with an agency from which to send the ACL mobile agent message.
A NULL pointer can be used to send the ACL message from an unspecified agency.
filename The ACL mobile agent message file to be sent.
Description

This function is used to send an XML based ACL mobile agent message, which is saved as a file, to a remote
agency.

Example

/* File: hello_world/client.c =*/

#include <stdio.h>
#include <stdlib.h>
#include <libmc.h>

int main ()

{
MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
int local_port=5050;

MC_InitializeAgencyOptions (&options);
//MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =*/

agency = MC_Initialize(local_port, &options);

agent = MC_ComposeAgentFromFile (

"mobagentl", /* Name x/

"localhost:5050", /% Home =*/

"IEL", /* Owner =/

"hello_world.c", /% Filename =/

NULL, /* Return var name. NULL for no return =/
"localhost:5051", /x Server to execute task on =/

0); /* Persistent. 0 for no persistence. x/

/+ Add the agent to the agency to start it =/
MC_AddAgent (agency, agent);

MC_MainLoop (agency) ;
MC_End (agency) ;

222

exit (0);
}

See Also

223

MC_SendAgentMigrationMessage() [Deprecated]

Synopsis

#include <libmc.h>

int MC_SendAgentMigrationMessage(MCAgency_t agency, char *message, char *hostname, int
port);

Purpose
Send an ACL mobile agent message to a remote agency.
Please note that this function is deprecated. Please use the MC_SendAgent () function instead.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency A handle associated with an agency from which to send the ACL mobile agent message.
A NULL pointer can be used to send the ACL message from an unspecified agency.
message The ACL mobile agent message to be sent.
hostname The hostname of the remote agency. It can be in number-dot format or hostname format,
i.e., 169.237.104.199 or machine.ucdavis.edu.
port The port number on which the remote agency is listening.
Description

This function is used to send an XML based ACL mobile agent message, which is a string, to a remote
agency. This function can be used without a running local agency.

Example

See Also

224

MC _SendAgentMigrationMessageFile() [Deprecated]

Synopsis

#include <libmc.h>

int MC_SendAgentMigrationMessageFile(MCAgency_t agency, char * filename, char *hostname,
int port);

Purpose
Send an ACL mobile agent message saved as a file to a remote agency.
Please note that this function is deprecated. Please use the MC_SendAgentFile () function instead.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agency A handle associated with an agency from which to send the ACL mobile agent message.
A NULL pointer can be used to send the ACL message from an unspecified agency.
filename The ACL mobile agent message file to be sent.
hostname The hostname of the remote agency. It can be in number-dot format or hostname format,
i.e., 169.237.104.199 or machine.ucdavis.edu.
port The port number on which the remote agency is listening.
Description

This function is used to send an XML based ACL mobile agent message, which is saved as a file, to a remote
agency. This function can be used without a running local agency.

Example

/* File: hello_world/client.c x/

#include <stdio.h>
#include <stdlib.h>
#include <libmc.h>

int main ()

{
MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
int local_port=5050;

MC_InitializeAgencyOptions (&options);
//MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =/

agency = MC_Initialize(local_port, &options);

agent = MC_ComposeAgentFromFile (

"mobagentl", /* Name */

"localhost:5050", /% Home x/

"IEL", /* Owner =/

"hello_world.c", /* Filename =x/

NULL, /+* Return var name. NULL for no return =/

225

"localhost:5051", /* Server to execute task on =/
0); /* Persistent. 0 for no persistence. x/

/+ Add the agent to the agency to start it =/
MC_AddAgent (agency, agent);

MC_MainLoop (agency) ;
MC_End (agency) ;
exit (0);

See Also

226

MC_SendSteerCommand()

Synopsis
#include <libmc.h>
int MC _SendSteerCommand(MCAgency_t agency, enum MC_SteerCommand_e cmd);

Purpose
Send a steering command to a Mobile-C computational steering algorithm.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency An initialized agency handle to add an agent to.
cmd The command to send.

Description

This function sends a steering command to a Mobile-C steerable algorithm.
Example

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">
<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>suspend_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASKS task="1" num="0">
<TASK num="0"
complete="0"
server="localhost:5050">
<DATA name="no-return" >
</DATA>
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main() {
int mutex_id = 55;
mc_MutexLock (mutex_id) ;
printf ("Suspending...\n");
mc_SendSteerCommand (MC_SUSPEND) ;
sleep (10);
mc_MutexUnlock (mutex_id) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>

227

</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_Steer(), MC_SteerControl().

228

MC_SetAgentStatus()

Synopsis
#include <libmc.h>
int MC _SetAgentStatus(MCAgent_t agent, int status);

Purpose
Set the status of a mobile agent in an agency.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
agent The mobile agent whose status is to be assigned.

status An integer representing the status to be assinged to a mobile agent.

Description
This function returns an integer of enumerated type enum MC_AgentStatus_e. Details about this enumer-
ated type may be found in Table on page

Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
int main ()
{
MCAgency_t agencyl;
MCAgency_t agency?2;
MCAgencyOptions_t options;
int 1i;
int portl = 5051;
int port2 = 5052;

MCAgent_t agent;
MCAgent_t agent_copy;

MC_InitializeAgencyOptions (&options);

/+ We want _all_ the threads on: EXCEPT, the command prompt thread =/
for (i = 0; i < MC_THREAD_ALL; i++) {
MC_SetThreadOn (&options, 1i);
}
MC_SetThreadOff (&§options, MC_THREAD_CP); /x Turn off command prompt =*/

agencyl = MC_Initialize(
portl,
&options);

agency2 = MC_Initialize(

229

portz,
&options);

while (1) |
agent = MC_WaitRetrieveAgent (agencyl);
MC_CopyAgent (&agent_copy, agent);
MC_SetAgentStatus (agent_copy, MC_WAIT_CH);
MC_AddAgent (agency2, agent_copy) ;
MC_ResetSignal (agencyl);

return 0;

See Also

230

MC _SetDefaultAgentStatus()

Synopsis
#include <libmc.h>
int MC _SetDefaultAgentStatus(MCAgency_t agency, int status);

Purpose
Set the default status of any incoming mobile agents.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
agency A handle to a running agency.
status An integer representing the status to be assinged to any incoming mobile agents as their default
status.

Description
This function is used to set the default agent status for all incoming agents in an agency. By default, every
incoming agent is set to status “MC_WAIT_CH”, but that may be changed with this function. The agent

status is an enumerated type “enum MC_AgentStatus_e”, which may be seen in Table
Example

MCAgency_t agency;
agency = MC_TInitialize (5050, NULL);
MC_SetDefaultAgentStatus (agency, MC_AGENT_NEUTRAL) ;

/* etc... */

See Also
MC_GetAgentStatus()

231

MC_SetThread Off()

Synopsis
#include <libmc.h>
int MC _SetThreadOff(MCAgencyOptions_t xoptions, enum threadIndex_e thread);

Purpose
Set a particular thread to not execute upon Mobile-C initialization.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
options An allocated MCAgencyOptions_t variable.
thread A thread index.

Description
This function is used to modify the Mobile-C startup options. It is used to disable threads that may otherwise
be enabled. The threads which may be modified are

MC_THREAD Al : Agent Initializing Thread - Create agent from incoming messages.

MC_THREAD_AM : Agent Managing Thread - Manage active agents.

MC_THREAD_CL : Connection Listening Thread - Listen incoming connections.

MC_THREAD_MR : Message Receiving Thread - Handle incoming connections and recieve agent mes-
sages.

MC_THREAD_MS : Message Sending Thread - Handle outgoing connections and send agent mes-
sages.

MC_THREAD CP: Command Prompt Thread - Handle an interactive user command prompt.

Example

MCAgencyOptions_t options;
MCAgency_t agency;

/+ Turn the listen thread off. We will receive our messages
in another method. =/
MC_SetThreadOff (&options, MC_THREAD_AT);

/+ Start the agency with no listen threadx*/
agency = MC_Initialize (5050, &options);

/* etc ... x/

See Also
MC_SetThreadOn()

232

MC_SetThreadOn()

Synopsis
#include <libmc.h>
int MC _SetThreadOn(MCAgencyOptions_t xoptions, enum threadIndex_e thread);

Purpose
Sets a particular thread to execute upon Mobile C initialization.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters
options An allocated MCAgencyOptions_t variable.
thread A thread index.

Description
This function is used to modify the Mobile-C startup options. It is used to enable threads that may otherwise
be disabled. The threads which may be modified are

MC_THREAD Al : Agent Initializing Thread - Create agent from incoming messages.

MC_THREAD_AM : Agent Managing Thread - Manage active agents.

MC_THREAD_CL : Connection Listening Thread - Listen incoming connections.

MC_THREAD_MR : Message Receiving Thread - Handle incoming connections and recieve agent mes-
sages.

MC_THREAD_MS : Message Sending Thread - Handle outgoing connections and send agent mes-
sages.

MC_THREAD CP: Command Prompt Thread - Handle an interactive user command prompt.

Example

MCAgencyOptions_t options;
MCAgency_t agency;

/* Turn the command prompt thread on =/
MC_SetThreadOn (&options, MC_THREAD_CP) ;

/+ Start the agency with a command prompt on port 5050 =/
agency = MC_Initialize (5050, &options);

/* etc ... */

See Also
MC _SetThreadOff()

233

MC_Steer()

Synopsis
#include <libmc.h>
int MC_Steer(MCAgency _t attr, int (*funcptr)(void* data), void* arg);

Purpose

The MC_Steer function initialized and runs a function containing an algorithm. The function enables the
steering functionality of the algorithm so that it may accept command during runtime to change the ex-
ecution of the algorithm. For more information, please see the example and the demo located in the de-
mos/steer_example/ directory.

Return Value
The function returns O on success, or a non-zero error code on failure.

Description
The MC_Steer function is designed execute an algorithm in a fashion which enables that algorithm to be
steered or modified on-the-fly during runtime. See the demo and the example for more details.

Example

#include <stdio.h>
#include <libmc.h>
#ifdef _WIN32
#include <windows.h>
#else

#include <stdlib.h>
fendif

int algorithm(voidx boo);

int main() {
MCAgency_t agency;
int local_port = 5050;
MCAgencyOptions_t options;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /x Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);
printf ("Starting algorithm...\n");
MC_Steer (
agency,
&algorithm,

NULL
)i

MC_End (agency) ;
return 0;

234

int algorithm(void* boo)

{

int 1=0;
MC_SteerCommand_t command;
while (1) {
#ifndef _WIN32
sleep(l);
felse
Sleep (1000);
fendif
printf ("$d \n", 1i);
i++;
command = MC_SteerControl () ;
if(
command == MC_RESTART |
command == MC_STOP

return 0;

See Also
MC_SteerControl()

235

MC_SteerControl()

Synopsis
#include <libmc.h>
int MC_SteerControl(void);

Purpose
This function is used to enable Mobile-C as a steerable computational platform. See the example following
for more information, as well as the demo provided in the directory demos/steer_example.

Return Value
This function returns the current steer command. The command is of type enum MC_Steer_Command _e.
This enumerated type contains the following definitions:

MC_RUN Continue the algorithm.
MC_SUSPEND Pause the algorithm.
MC_RESTART Restart the algorithm from the beginning.
MC_STOP Stop the algorithm.
Description

MC _SteerControl controls the execution of an algorithm in binary space. This function is meant to retrieve
the current requested command for the algorithm, but it is up to the algorithm implementation to actually
implement these behaviours. See the example and the demo for more details.

Example

#include <stdio.h>
#include <libmc.h>
#ifdef _WIN32
#include <windows.h>
#else

#include <stdlib.h>
fendif

int algorithm(voidx boo);
int main () {
MCAgency_t agency;
int local_port = 5050;
MCAgencyOptions_t options;
MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&§options, MC_THREAD_CP); /x Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);
printf ("Starting algorithm...\n");
MC_Steer (
agency,
&algorithm,

NULL
)i

MC_End (agency) ;

236

return 0;

int algorithm(voidx boo)

{

int i=0;
MC_SteerCommand_t command;
while (1) {
#ifndef _WIN32
sleep(l);
felse
Sleep (1000);
#endif
printf ("$d \n", 1i);
i++;
command = MC_SteerControl () ;
if(
command == MC_RESTART |
command == MC_STOP

return 0;

See Also
MC_Steer()

237

MC_SyncDelete()

Synopsis
#include <libmc.h>
int MC _SyncDelete(int ¢d);

Purpose
Delete a previously initialized synchronization variable.

Return Value
This function returns O on success and nonzero otherwise.

Parameters
id The 1d of the condition variable to delete.

Description
This function is used to delete and deallocate a previously initialized Mobile-C synchronization variable.

Example
Please see Chapter [I1]on synchronization on page [56|for more details about using this function.

See Also
MC_Synclnit().

238

MC_Synclnit()

Synopsis
#include <libmc.h>
int MC _SyncInit(MCAgency_t agency, int id);

Purpose
Initialize a new synchronization variable.

Return Value
This function returns the allocated id of the synchronization variable. Note that the allocated id may not
necessarily be the same as the requested id. See the description below for more details.

Parameters
agency The agency in which the new synchronization variable should be initialized.
id A requested synchronization variable id. A random id will be assigned if the value passed is 0
or if there is a conflicting id.

Description

This function initializes a generic Mobile-C synchonization node for use by agents and the agency. Each
node contains a mutex, a condition variable, and a semaphore. Upon initialization, each variable is initialized
to default values: The mutex is unlocked and the semaphore has a value of zero. Each node may be used as
a mutex, condition variable, or semaphore. Though it is possible to use multiple synchronization variables
in a single node, this is discouraged as it may lead to unpredictable results.

Each synchronization variable created by this function is effectively global across the agency and there-
fore must have a unique identifying number. If this function is called requesting an id that is already reg-
istered, the function will automatically ignore the requested value and allocate a synchronization variable
with a randomly generated id.

Example
Please see Chapter 11| on synchronization on page [56|for more details about using this function.

See Also

MC_CondSignal(), MC_CondWait(), MC_MutexLock(), MC_MutexUnlock(), MC_SemaphorePost(),
MC_SemaphoreWait(), MC_SyncDelete().

239

MC _TerminateAgent()

Synopsis
#include <libmc.h>
int MC _TerminateAgent(MCAgent_t agent);

Purpose
Terminate the execution of a mobile agent in an agency.

Return Value
The function returns O on success and an error code on failure.

Parameters
agent A valid mobile agent.

Description

This function halts a running mobile agent. The Ch interpreter is left intact. The mobile agent may still
reside in the agency in MC_AGENT_NEUTRAL mode if the mobile agent is tagged as ’persistent’, or is
terminated and flushed otherwise.

Example
This function is identical to the agent-space counterpart. Please see the example listed under mc_Terminate Agent()

on page|339

See Also

240

MC_WaitAgent()

Synopsis
#include <libmc.h>
int MC_WaitAgent(MCAgency_t agency);

Purpose
Cause the calling thread to wait until a mobile agent is received.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agency A handle associated with a running agency.

Description
This function waits on an agency and wakes up the addition of a new mobile agent to the agency.

Example

See Also

241

MC_WaitRetrieveAgent()

Synopsis
#include <libmc.h>
MCAgent_t MC_WaitRetrieveAgent(MCAgency_t agency);

Purpose
Block the calling thread until a mobile agent arrives, and return the mobile agent instead of executing it.

Return Value
The function returns a mobile agent on success and a NULL on failure.

Parameters
agency A handle associated with a running agency.

Description
This function waits on an agency and wakes up the addition of a new mobile agent to the agency. It will
then remove the mobile agent from the agency and return it.

Example

#include <libmc.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
felse
#include <unistd.h>
fendif
int main ()
{
MCAgency_t agency;
MCAgencyOptions_t options;
MCAgent_t agent;
char =str;
int 1i;
int local_port=5051;

MC_InitializeAgencyOptions (&options);

for (i = 0; i < MC_THREAD_ALL; i++) {
MC_SetThreadOn (&options, 1i);
}
MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off the command prompt =*/

agency = MC_Initialize(
local_port,
&options);
MC_ResetSignal (agency) ;
/+ Retrieve the first arriving agent =/
/* Note: MC_WaitRetrieveAgent () pauses the agency: We’ll need to unpause
* it later with MC_SignalReset () =/
agent = MC_WaitRetrieveAgent (agency) ;
if (agent != NULL)

242

{

printf ("The agent status is: %d\n", MC_GetAgentStatus (agent));
printf ("This agent has %d task(s).\n", MC_GetAgentNumTasks (agent));
str = MC_GetAgentXMLString (agent) ;

printf ("Agent XML String:\n%s\n", str);

free(str);

str = MC_RetrieveAgentCode (agent) ;

printf ("Agent Code:\n%$s\n", str);

free(str);

MC_ResetSignal (agency) ;

MC_MainLoop (agency) ;

}

else

printf ("Error: returned NULL pointer for agent.\n");

return 0;

See Also

243

MC_WaitSignal()

Synopsis
#include <libmc.h>
int MC_WaitSignalMCAgency_t agency, int signals);

Purpose
This function is used to block the execution of a Mobile-C library application until the event of a signal.

Return Value
This function returns 0 on success and non-zero otherwise.

Parameters

agency A handle to a running agency.
signals A bitwise-or combination of signals to wait on.

Description
This function is used to block the execution of an application using the Mobile-C library until a given signal
is received as specfied by the parameter signals. Currently implemented signals that may be waited on are:

MC_RECV_CONNECTION : Continue after a connection is initialized.
MC_RECV_MESSAGE : Continue after a message is received.
MC_RECV_AGENT : Continue after an agent is received.
MC_RECV_RETURN: Continue after return data is received.
MC_EXEC_AGENT : Continue after an agent is finished executing.
MC_ALL_SIGNALS : Continue after any one of the above events occurs.

In order to wait on a custom combination of signals, the bitwise ’or operator’ may be used to specify com-
binations of signals.

Example

/* More code here. =/

/+ Now we wait until we receive a message or mobile agent. =/
MC_WaitSignal (agency, RECV_MESSAGE | RECV_AGENT) ;

/+ At this point, a message or mobile agent has been received. */
/+ Perform operations on the new message or mobile agent here. x/

/* Resume the Mobile-C library x/
MC_ResetSignal (agency) ;

/*x More code here. «*/

244

The above piece of code blocks execution until either a RECV_MESSAGE or a RECV_AGENT event oc-
curs. The function MC_ResetSignal() must be invoked at some point after returning from MC_WaitSignal()
in order for Mobile-C to resume normal operations.

See Also
MC_ResetSignal()

245

Appendix B

Mobile-C API in the C/C++ Script Space

The prototypes of Mobile-C functions used in the C/C++ script space are declared in agent.c Furthermore, a
number of enumerations, data types, and special variables are declared in agent.c for each agent interpreter
by the agency. These enums, data types, special variables, and functions are all considered “built-in” in the
mobile agent space as no header file or extra code is needed to access them. They are declared through
Embedded Ch functions, Ch_DeclareFunc(), Ch_DeclareVar() and Ch_DeclareTypedef() [12] Note that
the C/C++ script space is also referred to the mobile agent space in this user’s guide.

All enumerations and special variables nay be found in Tables [B.T} and [B.3] respectively. The
defined data type and function prototypes are listed in Tables and respectively. agent.c can be
found in directories ’src’.

246

Table B.1: enum MC_SteerCommand_e : This enumerated type lists commands that may be used with the
mc_SendSteerCommand() function.

Data Type Description

MC_RUN Start/continue an algorithm.
MC_SUSPEND Pause an algorithm.

MC_RESTART Restart an algorithm for initial values.
MC_STOP Stop an algorithm.

Table B.2: enum mc_AgentStatus_e: This enumerated type defines the current execucion state of a mobile
agent.

0, MC_WAIT_CH : Mobile agent is currently waiting to be executed.

1, MC_WAIT_MESSGSEND : Mobile agent is currently waiting to be exported to another agency.
2, MC_AGENT_ACTIVE : Mobile agent is currently being executed.

3, MC_AGENT_NEUTRAL : Mobile agent is waiting for an unspecified reason.

4 , MC_AGENT_SUSPENDED : Mobile agent is currently being suspended.

5, MC_WAIT_FINISHED : Mobile agent has finished execution and is waiting for removal.

Table B.3: A table of pre-defined agent-space variables. These are considered ’built-in’ in agent space as no
additional header file is required to access these variables.

Variable Name Description

int mc_agent_id Holds the unique integer id assigned by the Agency to the agent.

char mc_agent_name[] Holds the agent’s name.

void* mc_current_agent Holds a pointer itself.

char mc_host_namef[] Holds the agency’s hostname.

int mc_host_port Holds the port of the current agency.

int mc_task_progress Contains the current task number of the agent.
int mc_num_tasks Contains the total number of tasks an agent has.

Table B.4: Data type for functions in the C/C++ script space.

Data Type Description

MCAgent_t A void pointer for a mobile agent.

247

Table B.5: Functions in the C/C++ script space.

Function Description

mc_AclAddReceiver() Add a receiver to a FIPA ACL message.

mc_AclAddReplyTo() Add a reply-to address to a FIPA ACL message.

mc_AclNew() Allocate a new empty FIPA ACL message.

mcAclPost() Post a FIPA ACL message.

mc_AclReply() Generate a reply to a FIPA ACL message.

mc_AclRetrieve() Retrieve a FIPA ACL message from the mailbox.

mcAclSend() Send a FIPA ACL message.

mc_AclSetContent() Set the content of a FIPA ACL message.

mc_AclSetPerformative() Set the performative of a FIPA ACL message.

mc_AclSetProtocol() Set the protocol of a FIPA ACL message.

mc_AclSetSender() Set the sender of a FIPA ACL message.

mc_AclWaitRetrieve() Wait for the arrival of a new FIPA ACL message.

mc_ AddAgent() Add a mobile agent into an agency.

mc_AgentAttachFile() Attach a file to the agent’s current task.

mc_AgentListFiles() List files attached to an agent’s task.

mc_AgentRetrieveFile() Retrieve and save an agent’s attached file onto the filesystem.

mc_AgentVariableSave() Save a variable to an agent’s datastate.

mc_AgentVariableRetrieve() Retrieve a previously saved variable.

mc Barrier() Block until all agents in an agency have called this function.

mc_BarrierDelete() Delete a Mobile-C barrier.

mc_BarrierInit() Initialize a Mobile-C barrier.

mc_CallAgentFunc() Call a function defined in an agent.

mc_ComposeAgent() Compose an agent from program source code.

mc_ComposeAgentS() Compose an agent from program source code with a workgroup
code.

mc_ComposeAgentFile() Compose an agent from a program source code file.

mc_ComposeAgentFileS() Compose an agent from a program source code file with a work-
group code.

mc_CondBroadcast() Wake up all agents/threads waiting on a condition variable.

mc_CondReset() Reset a Mobile-C condition variable.

mc_CondSignal() Signal another agent that is waiting on a condition variable.

mc_CondWait() Cause the calling agent or thread to wait on a Mobile C condi-
tion variable with the ID specified by the argument.

mc_DeleteAgent() Stop and remove an agent from an agency.

mc_DeregisterService() Deregister a service with the Directory Facilitator.

mcEnd()iL Terminate a Mobile-C agency.

mc_FindAgentByID() Find a mobile agent by its ID in an agency.

mc_FindAgentByName() Find a mobile agent by its name in an agency.

mc_GetAgentArrivalTime() Get the time when an agent arrives an agency.

mc_GetAgentExecEngine() Get the AEE associated with a mobile agent in an agency.

mc_GetAgentID() Get the ID of an agent.

mc_GetAgentName() Get the name of an agent.

248

Table B.5: Functions in the C/C++ script space (contd.).

Function Description

mc_MigrateAgent() Migrate an agent.

mc_ResumeAgency() Resume an agency’s operation.

mc_RetrieveAgent() Retrieve the first neutral mobile agent from the mobile agent
list.

mc_RetrieveAgentCode() Retrieve a mobile agent code in the form of a character string.

mc_SearchForService() Search the Directory Facilitator for a service.

mc_SemaphorePost() Unlock one resource from a Mobile-C semaphore.

mc_SemaphoreWait() Allocate one resource from a Mobile-C synchronization
semaphore variable.

mc_SendAgentMigrationMessage() .. Send an ACL mobile agent message to a remote agency.

mc_SendAgentMigrationMessageFile() Send an ACL mobile agent message saved as a file to a remote
agency.

mc_SendSteerCommand() Send a command to control a steerable binary space function.

mc_SetAgentStatus() Set the status of a mobile agent in an agency.

mc_SetDefaultAgentStatus() Assign a user defined default status to all incoming mobile
agents.

mc_SyncDelete() Delete a previously initialized synchronization variable.

mc_SyncInit() Initialize a new synchronization variable.

mc_TerminateAgent() Terminate the execution of a mobile agent in an agency.

mc_GetAgentNumTasks() Get the number of tasks a mobile agent has.

mc_GetAgentReturnData() Get the return data of a mobile agent.

mc_GetAgentStatus() Get the status of a mobile agent in an agency.

mc_GetAgentType() Get the type of a mobile agent.

mc_GetAgentXMLString() Retrieve a mobile agent message in XML format as a character
string.

mc_GetAllAgents() Obtain all the agents in an agency.

mc_HaltAgency() Halt an agency’s operation.

mc_MutexLock() Lock a previously initialized Mobile-C synchronization vari-
able as a mutex.

mc_MutexUnlock() Unlock a locked Mobile-C synchronization variable.

mc_PrintAgentCode() Print a mobile agent code for inspection.

mc_RegisterService() Register a new service with the Directory Facilitator.

249

mc_AclAddReceiver()

Synopsis
int mc_AclAddReceiver(fipa_acl_message_t* acl, const char* name, const char* address);

Purpose
Add a receiver to the ACL message.

Return Value
Returns 0 on success or non-zero on failure.

Parameters
acl An initialized ACL message.

name Sets the name of the receiver.
address Sets the address of the receiver.

Description

This function is used to add a receiver to an ACL message. This function may be called multiple times on an
ACL message. each time this function is called, a new receiver is appended to the list of intended receivers
for the ACL message.

Example

<!-— File: fipa_test/test2.xml —->
<?xml version="1.0"?2>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
#endif

#include <math.h>

#include <fipa_acl.h>

int main ()

{
fipa_acl_message_t+* message;
char +*name, xaddress;

250

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name);

message = mc_AclNew();

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");
mc_AclSetContent (message, "Content from mobagent2");

printf ("$s: sending ACL message...\n");
mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent) ;

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %$s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_AclSetPerformative (), mc_AclSetSender (), mc_AclAddReplyTo(),
mc_AclSetContent ()

251

mc_AclAddReceiver()

Synopsis
int mc_AclAddReceiver(fipa_acl_message_t* acl, const char* name, const char* address);

Purpose
Add a receiver to the ACL message.

Return Value
Returns 0 on success or non-zero on failure.

Parameters
acl An initialized ACL message.

name Sets the name of the receiver.
address Sets the address of the receiver.

Description

This function is used to add a receiver to an ACL message. This function may be called multiple times on an
ACL message. each time this function is called, a new receiver is appended to the list of intended receivers
for the ACL message.

Example

<!-— File: fipa_test/test2.xml —->
<?xml version="1.0"?2>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
#endif

#include <math.h>

#include <fipa_acl.h>

int main ()

{
fipa_acl_message_t+* message;
char +*name, xaddress;

252

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name);

message = mc_AclNew();

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");
mc_AclSetContent (message, "Content from mobagent2");

printf ("$s: sending ACL message...\n");
mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent) ;

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %$s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_AclSetPerformative (), mc_AclSetSender (), mc_AclAddReplyTo(),
mc_AclSetContent ()

253

mc_AclAddReplyTo()

Synopsis
#include <libmc.h>
int mc_AclAddReplyTo(fipa_acl_message_t* acl, const char® name, const char* address);

Purpose
Add a reply-to address to the ACL message.

Return Value
Returns 0 on success or non-zero on failure.

Parameters
acl An initialized ACL message.
name Sets the name of the reply-to destination.
address Sets the address of the reply-to destination.

Description

This function is used to add a reply-to address to an ACL message. This function may be called multiple
times on an ACL message. each time this function is called, a new reply-to address is appended to the list
of intended reply-to addresses for the ACL message.

Example

<!-- File: fipa_test/test2.xml —-->
<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
#endif

#include <math.h>

#include <fipa_acl.h>
int main ()

254

fipa_acl_message_t+* message;
char *name, =xaddress;

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name);

message = mc_AclNew();

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");
mc_AclSetContent (message, "Content from mobagent2");

printf ("$s: sending ACL message...\n");
mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name);
message = mc_AclWaitRetrieve (mc_current_agent) ;

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %$s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_AclSetPerformative (), mc_AclSetSender (), mc_AclAddReceiver (),
mc_AclSetContent ()

255

mc_AclNew()

Synopsis
#include <libmc.h>
fipa_acl_message _t* mc_AclNew(void);

Purpose
Create a new, blank ACL message.

Return Value
Returns a newly allocated ACL message structure or NULL on failure.

Parameters None.

Description
This function allocates and returns a new ACL message. All attributes of the message are set empty values
and must be initialized before sending the message.

Example

<!-— File: fipa_test/test2.xml —->
<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">

<TASK num="0" complete="0" server="localhost:5052">
</TASK>

<AGENT_CODE>

<! [CDATA[

//#include <stdio.h>

#ifndef _WIN32_

#pragma package "/usr/local/ch/package/chmobilec"
#else

#pragma package "C:\\ch\\package\\chmobilec"
#endif

#include <math.h>

#include <fipa_acl.h>

int main ()

{
fipa_acl_message_t+* message;
char *name, xaddress;

256

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name) ;

message = mc_AclNew () ;

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");

mc_AclSetContent (message, "Content from mobagent2");
printf ("%$s: sending ACL message...\n");

mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent);

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_AclPost (), mc_AclReply (), mc_AclRetrieve (), mc_AclSend(),
mc_AclWaitRetrieve ()

257

mc_AclPost()

Synopsis
#include <libmc.h>
int mc_AclPost(mcAgent_t agent, fipa_acl_message_t* message);

Purpose
Post a message directly to an agent’s mailbox.

Return Value
Returns 0 on success, non-zero on failure.

Parameters
agent An initialized mobile agent.
messagelhe ACL message to post.

Description
This function is used to post an ACL message directly to an agent’s mailbox. The agent must reside on the
same agency as the caller. No forwarding or checking of any fields of the ACL message is performed.

Example
See Also

mc_AclNew (), mc_AclReply (), mc_AclRetrieve (), mc_AclSend(),
mc_AclWaitRetrieve ()

258

mc_AclReply()

Synopsis
#include <libmc.h>
int mc_AclReply(fipa_acl_message _t* acl_message);

Purpose
Automatically generate an ACL message addressed to the sender of an incoming ACL message..

Return Value
A newly allocated ACL message with the ‘receiver’ field initialized, or NULL on failure.

Parameters
acl_messhlye message to generate a reply to.

Description

This function is designed to make replying to received ACL messages easier. The function automatically
generates a new ACL message with the correct destination address to reach the sender of the original mes-
sage.

Example
See Also

mc_AclNew (), mc_AclPost (), mc_AclRetrieve (), mc_AclSend(),
mc_AclWaitRetrieve ()

259

mc_AclRetrieve()

Synopsis
#include <libmc.h>
int mc_AclRetrieve(MCAgent _t agent);

Purpose
Retrieve a message from an agent’s mailbox.

Return Value
An ACL message on success, or NULL if no messages are in the mailbox.

Parameters
agent An initialized mobile agent.

Description
This function is used to retrieve a message from an agent’s mailbox. The message are retrieved in FIFO
order. If there are no messages in the mailbox, the function will return NULL.

Example

<!-— File: fipa_test/testl.xml -->
<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
fendif

#include <math.h>

#include <fipa_acl.h>

int main ()

{
fipa_acl_message_t* message;
fipa_acl_message_t* reply;

260

printf ("\n%s: Arrived at %s.\n", mc_agent_name, mc_agent_address);

printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent);

printf ("$s: Received a message from %s.\n", mc_agent_name, message->sender->name) ;
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

printf ("$s: Generating a reply message.\n", mc_agent_name);
reply = mc_AclReply (message);
mc_AclSetPerformative (reply, FIPA_INFORM) ;

mc_AclSetSender (reply, mc_agent_name, mc_agent_address);
mc_AclSetContent (reply, "Reply from mobagentl.");

printf ("$s: Sending message...\n", mc_agent_name) ;
mc_AclSend(reply);

mc_AclDestroy (message) ;
mc_AclDestroy (reply);
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_AclNew (), mc_AclPost (), mc_AclReply (), mc_AclSend(),
mc_AclWaitRetrieve ()

261

mc_AclSend()

Synopsis
#include <libmc.h>
int mc_AclSend(MCAgency_t attr, fipa_acl_message t* acl);

Purpose
Send an ACL message.

Return Value
Returns 0 on success, non-zero on failure.

Parameters
attr An initialized Mobile-C agency handle.
messagelhe ACL message to send.

Description

This function will compose a fully compliant FIPA Acl message and send it to the destinations as specified
by the ‘receiver’ field of the acl message. The function also creates a FIPA compliant xml envelope which is
attached to the message. The message is sent using the FIPA compliant HTTP Message Transport Protocol.

Example

<!-— File: fipa_test/test2.xml -->
<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<1 [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
fendif

#include <math.h>
#include <fipa_acl.h>
int main ()

{

262

fipa_acl_message_t* message;
char *name, =*address;

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name) ;

message = mc_AclNew () ;

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");

mc_AclSetContent (message, "Content from mobagent2");
printf ("%$s: sending ACL message...\n");

mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent);

mc_AclGetSender (message, &name, &address);
printf ("$s: Received a message from %s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_AclNew (), mc_AclPost (), mc_AclReply (), mc_AclRetrieve(),
mc_AclWaitRetrieve ()

263

mc_AclSetContent()

Synopsis
#include <libmc.h>
int mc_AclSetContent(fipa_acl_message _t* acl, const char* name);

Purpose
Set the content on an ACL message.

Return Value
Returns 0 on success or non-zero on failure.

Parameters
acl An initialized ACL message.

content Set the content field of an ACL message.

Description
This function sets the “content” field of an ACL message.

Example

<!-— File: fipa_test/test2.xml -->
<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
fendif

#include <math.h>

#include <fipa_acl.h>

int main ()

{
fipa_acl_message_t* message;
char *name, xaddress;

264

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name) ;

message = mc_AclNew () ;

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");

mc_AclSetContent (message, "Content from mobagent2");
printf ("%$s: sending ACL message...\n");

mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent);

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_AclSetPerformative (), mc_AclSetSender (), mc_AclAddReceiver (),
mc_AclAddReplyTo ()

265

mc_AclSetPerformative()

Synopsis
#include <libmc.h>
int mc_AclSetPerformative(fipa_acl_message_t* acl, enum fipa_performative_e performative);

Purpose
Set the performative on an ACL message.

Return Value
Returns 0 on success or non-zero on failure.

Parameters
acl An initialized ACL message.

per fornibliedelPA performative you wish the message to contain.

Description
This function is used to set the FIPA ACL performative on an ACL message. The performative may be any
valid FIPA performative listed in the table below.

Enumerated Value FIPA Perfomative
FIPA_ACCEPT_PROPOSAL ammpbpnmo&ﬂ
FIPA_AGREE agree
FIPA CANCEL cancel
FIPA CALL_FOR_PROPOSAL call-for-proposal
FIPA_CONFIRM confirm
FIPA_DISCONFIRM disconfirm
FIPA_FAILURE failure
FIPA_INFORM inform
FIPA_INFORM_IF inform-if
FIPA_INFORM_REF inform-ref
FIPA_NOT_UNDERSTOOD not-understood
FIPA_PROPOGATE propogate
FIPA_PROPOSE propose
FIPA_PROXY proxy
FIPA_QUERY_IF query-if
FIPA_QUERY_REF query-ref
FIPA REFUSE refuse
FIPA REJECT_PROPOSAL reject-proposal
FIPA_REQUEST request
FIPA_REQUEST_WHEN request-when
FIPA_REQUEST _WHENEVER request—whenever
FIPA_SUBSCRIBE subscribe

Example

<!-- File: fipa_test/test2.xml -->

<?xml version="1.0"7?>

<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

266

<MOBILEC_MESSAGE>

<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>

<NAME>mobagent2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<! [CDATA[

//#include <stdio.h>

#ifndef _WIN32_

#pragma package "/usr/local/ch/package/chmobilec"
felse

#pragma package "C:\\ch\\package\\chmobilec"
fendif

#include <math.h>
#include <fipa_acl.h>
int main ()

{

fipa_acl_message_t* message;
char +*name, =*address;

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name);

message = mc_AclNew () ;

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");

mc_AclSetContent (message, "Content from mobagent2");
printf ("%$s: sending ACL message...\n");

mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent);

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %$s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>

</AGENT_CODE>
</TASKS>

267

</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_AclSetSender (), mc_AclAddReceiver (), mc_AclAddReplyTo(),

mc_AclSetContent ()

268

mc_AclSetSender()

Synopsis
#include <libmc.h>
int mc_AclSetSender(fipa_acl_message_t* acl, const char* name, const char* address);

Purpose
Set the sender on an ACL message.

Return Value
Returns 0 on success or non-zero on failure.

Parameters
acl An initialized ACL message.

name Sets the name of the sender.
address Sets the address of the sender.

Description
This function is used to allocate and set the “sender” field of an ACL message. If this function is called
more than once on an ACL message, the original data in the “sender” field is overwritten.

Example

<!-— File: fipa_test/test2.xml —->
<?xml version="1.0"?2>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 2</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5052">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
#endif

#include <math.h>

#include <fipa_acl.h>

int main ()

{
fipa_acl_message_t+* message;
char +*name, xaddress;

269

printf ("\n%s: Arried at %s\n", mc_agent_name, mc_agent_address);

printf ("\n%s: Creating new ACL message.\n", mc_agent_name);

message = mc_AclNew();

mc_AclSetPerformative (message, FIPA_INFORM) ;

mc_AclSetSender (message, mc_agent_name, mc_agent_address);
mc_AclAddReceiver (message, "mobagentl", "http://localhost:5051/acc");

mc_AclSetProtocol (message, FIPA_PROTOCOL_CONTRACT_NET) ;
mc_AclSetConversationID (message, "cnl");
mc_AclSetContent (message, "Content from mobagent2");

printf ("$s: sending ACL message...\n");
mc_AclSend (message) ;
mc_AclDestroy (message) ;

/+ Now wait for a message to come back =*/
printf ("$s: Waiting for a message.\n", mc_agent_name) ;
message = mc_AclWaitRetrieve (mc_current_agent) ;

mc_AclGetSender (message, &name, &address);

printf ("$s: Received a message from %$s.\n", mc_agent_name, name);
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

mc_AclDestroy (message) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_AclSetPerformative (), mc_AclAddReceiver (), mc_AclAddReplyTo(),
mc_AclSetContent ()

270

mc_AclWaitRetrieve()

Synopsis
#include <libmc.h>
int mc_AclWaitRetrieve(mcAgent_t agent);

Purpose
Wait until there is a message in an agent’s mailbox and retrieve it.

Return Value
An ACL message on success, or NULL on failure.

Parameters
agent An initialized mobile agent.

Description

This function is used to wait for activity on an empty mailbox. If this function is called on an empty mailbox,
the function will block indefinitely until a message is posted to the mailbox. Once a message is posted, the
function will unblock and return the new message.

Example

<!-— File: fipa_test/testl.xml —->
<?xml version="1.0"?2>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
</TASK>
<AGENT_CODE>
<! [CDATA[
//#include <stdio.h>
#ifndef _WIN32_
#pragma package "/usr/local/ch/package/chmobilec"
#else
#pragma package "C:\\ch\\package\\chmobilec"
#endif

#include <math.h>
#include <fipa_acl.h>
int main ()

{

fipa_acl_message_t+* message;

271

fipa_acl_message_tx reply;
printf ("\n%s: Arrived at %s.\n", mc_agent_name, mc_agent_address);

printf ("$s: Waiting for a message.\n", mc_agent_name);
message = mc_AclWaitRetrieve (mc_current_agent);

printf ("$s: Received a message from %s.\n", mc_agent_name, message->sender->name) ;
printf ("\tContent is ’%s’.\n", mc_AclGetContent (message));

printf ("\tProtocol is ’%d’.\n", mc_AclGetProtocol (message));

printf ("\tConverationID is ’%s’.\n", mc_AclGetConversationID (message)) ;

printf ("$s: Generating a reply message.\n", mc_agent_name);
reply = mc_AclReply (message) ;
mc_AclSetPerformative (reply, FIPA_INFORM) ;

mc_AclSetSender (reply, mc_agent_name, mc_agent_address);
mc_AclSetContent (reply, "Reply from mobagentl.");

printf ("$s: Sending message...\n", mc_agent_name) ;
mc_AclSend(reply);

mc_AclDestroy (message) ;
mc_AclDestroy (reply);
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_AclNew (), mc_AclPost (), mc_AclReply (), mc_AclSend(),
mc_AclWaitRetrieve ()

272

mc_AddAgent()

Synopsis
int mc_AddAgent(MCAgent_t agent);

Purpose
Add a mobile agent into an agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agent An initialized mobile agent.

Description
This function adds a mobile agent to an agency.

Example
Please see the example for MC_AddAgent() on page

See Also

273

mc_AgentAttachFile()

Synopsis
#include <libmc.h>
int mc_AgentAttachFile(MCAgent_t agent, const char* name, const char* filepath,);

Purpose
This function is used to attach a file to an agent.

Return Value
The function returns 0 on success or a non-zero error code on failure.

Parameters
agent A fully initialized agent handle.
name An alias to identify the attached file.
filepath The path to the file. Local paths are calculated from the execution directory of the
agency.
Description

This function is used to attach a file to an agent. The file may later be retrieved with the functions
mc_AgentRetrieveFile () or mc_.AgentRetrieveFile (). The files are attached to the agent’s

currently executing task.
Example

/* File: miscellaneous/taskl.c =/

int main ()

{
printf ("Hello. Now attaching file...\n");
mc_AgentAttachFile (mc_current_agent, "data", "data.png");
return 0;

/* File: miscellaneous/task2.c */

int main ()

{
charxx files;
int num_files;

int 1i;
int status;
printf ("Hello. Now retrieving file...\n");

mc_AgentListFiles (mc_current_agent, 0, &files, &num_files);
printf ("$d saved files:\n", num_files);
for(i = 0; 1 < num_files; i++) {
printf ("$s\n", files[il]);
}
status = mc_AgentRetrieveFile (mc_current_agent, 0, "data", "data_retrieved.png");
if (status) {
printf ("Error retrieving file.\n");

}

274

return 0;

}

See Also
mc_AgentRetrieveFile (), mc_AgentListFiles()

275

mc_AgentListFiles()

Synopsis

#include <libmc.h>

int mc_AgentListFiles®MCAgent_t agent, int tasknum, char*** names /+« OUT =/, int* num files
/% OUT */);

Purpose
This funciton is used to list the files attached to an agent’s task.

Return Value
The function returns O on success or a non-zero error code on failure.

Parameters
agent A fully initialized agent handle.
tasknum The selected task to list attached files.
names A two dimensional array to fill with names of attached files. This data structure
will need to be freed by the user after usage.
numfiles An integer to fill with the number of files attached to the task.
Description

This function is used to retrieve the names of files that are attached to an agent’s task. The names may be used
in other API function called such as mc_AgentRetrieveFile () ormc_AgentRetrieveFile ().
Example

Please see the example listed with the documentation for mc_AgentAttachFile ().

See Also

mc_AgentRetrieveFile (), mc_AgentAttachFiles /()

276

mc_AgentRetrieveFile()

Synopsis
#include <libmc.h>
int mc_AgentRetrieveFile(MCAgent_t agent, int tasknum, const char* name, const char* filepath,);

Purpose
This function is used to retrieve and save a file to from agent.

Return Value
The function returns 0 on success or a non-zero error code on failure.

Parameters
agent A fully initialized agent handle.
tasknum The task in which to retrieve the file.
name An alias to identify the attached file.
filepath The path to save the file. Local paths are calculated from the execution directory
of the agency.
Description

This function is used to retrieve a file from an agent task. The file must be attached to the agent from a prior
call to mc_AgentAttachFile (). The executing agency must have write permissions to save the file to
the correct location.

Example

Please see the example code attached with the documentation for mc_AgentAttachFile.

See Also

mc_AgentAttachFile (), mc_AgentListFiles ()

277

mc_AgentVariableRetrieve()

Synopsis
void* mc_AgentVariableSave(MCAgent_t agent, const char* variable_name, int task_num);

Purpose
Retrieve a previously saved variable from the agent’s datastate.

Return Value
A pointer to the data on success, or NULL on failure.

Parameters
agent The agent for which to save a variable. From agent space, this value will typically be

mc_current_agent, which is a special variable that is an agent’s handle to itself.
variable_name The name of the variable to save.
task_num The task from which to retrieve the data.

Description
This function is used to retrieve previously saved variables from an agent’s datastate. The task number of
the agent from which to retrieve data must be specified, and must be less than the number of the agent’s

current task.
Example

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost :5050</HOME>
<TASKS task="2" num="0">
<TASK num="0" complete="0" server="localhost:5051" code_id="1" />
<TASK num="1" complete="0" server="localhost:5050" code_id="2" />
<AGENT_CODE id="1">
<! [CDATA[
#include <stdio.h>
#include <math.h>
int savevar;
int another_savevar;
int array_savevar[1l0];
int main ()
{
int 1i;
printf ("Hello World!\n");

(
printf ("This is mobagentl from the agency at port 5050.\n");
printf ("I am performing the task on the agency at port 5051 now.\n");
printf ("$£f\n", hypot(1l,2));
savevar = 10;
another_savevar = 20;
mc_AgentVariableSave (mc_current_agent, "savevar");

278

mc_AgentVariableSave (mc_current_agent, "another_savevar");

for(i = 0; i < 10; i++) {
array_savevar[i] = ix3;

}

mc_AgentVariableSave (mc_current_agent, "array_savevar");

return 0;

11>
</AGENT_CODE>
<AGENT_CODE id="2">
<! [CDATA[

#include <stdio.h>
int retvar;
int main ()

{

const int «*i;

i = (int*)mc_AgentVariableRetrieve (mc_current_agent,

if (i1i==NULL) {
printf ("Variable ’savevar’ not found.\n");
} else {
printf ("Variable ’'savevar’ has value %d.\n", =i);
}
retvar = *1x2;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>

</MOBILEC_MESSAGE>

See Also
mc_AgentVariableSave()

279

"savevar",

0);

mc_AgentVariableSave()

Synopsis
int mc_AgentVariableSave(MCAgent_t agent, const char* variable_name);

Purpose
Save the value of a variable to the agent’s persistent datastate.

Return Value
0 on success, non-zero on failure.

Parameters
agent The agent for which to save a variable. From agent space, this value will typically be
mc_current_agent, which is a special variable that is an agent’s handle to itself.
varitable_name The name of the variable to save.

Description
This function is used to save arbitrary variables to an agent’s datastate. These variables may be read by the

agent later during later tasks.
Example

<?xml version="1.0"?2>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="2" num="0">
<TASK num="0" complete="0" server="localhost:5051" code_id="1" />
<TASK num="1" complete="0" server="localhost:5050" code_id="2" />
<AGENT_CODE id="1">
<! [CDATA[
#include <stdio.h>
#include <math.h>
int savevar;
int another_savevar;
int array_savevar[10];
int main ()
{
int 1i;
printf ("Hello World!\n");
printf ("This is mobagentl from the agency at port 5050.\n");
printf ("I am performing the task on the agency at port 5051 now.\n");
printf ("$£f\n", hypot(1l,2));

savevar = 10;

another_savevar = 20;

mc_AgentVariableSave (mc_current_agent, "savevar");
mc_AgentVariableSave (mc_current_agent, "another_savevar");

280

for(i = 0; i < 10; i++) {
array_savevar[i] = ix3;

}

mc_AgentVariableSave (mc_current_agent, "array_savevar");

return 0;

11>
</AGENT_CODE>
<AGENT_CODE id="2">
<! [CDATA[

#include <stdio.h>
int retvar;
int main ()

{

const int *i;

i = (intx)mc_AgentVariableRetrieve (mc_current_agent,

if (i==NULL) {
printf ("Variable ’savevar’ not found.\n");
} else {
printf ("Variable ’savevar’ has value %d.\n", *1i);
}
retvar = *1ix2;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>

</MOBILEC_MESSAGE>

See Also
mc_AgentVariableRetrieve()

281

"savevar", 0);

mc_Barrier()

Synopsis
int mc_Barrier(int id);

Purpose
This function blocks the calling thread until all registered threads and agents have been blocked.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters
id The id of the barrier to wait on.

Description

This function is used to synchronize a number of agents and threads. Each barrier is initialized so that it will
block the execution of threads and agents until a predetermined number of threads or agents have activated
the barrier, at which point all blocked threads and agents will be released simultaneously.

Example
Please see the example located at the directory mobilec/demos/mc barrier_example/ .

See Also
mc_BarrierDelete(), mc_BarrierInit().

282

mc_BarrierDelete()

Synopsis
int mc_BarrierDelete(int id);

Purpose
This function deletes a previously initialized Mobile-C Barrier variable.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters
id The id of the barrier to delete.

Description
This function deletes a previously initialized variable. Care should be taken when calling this function. If
there are any agents or threads blocked by a barrier that is deleted, they may remain blocked forever.

Example
Please see the example located at the directory mobilec/demos/mc_barrier_example/ .

See Also
mc_Barrier(), mc_BarrierInit().

283

mc_BarrierInit()

Synopsis
int mc_BarrierInit(int :d, int num _procs);

Purpose
This function initializes a Mobile-C Barrier variable for usage.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters

id The id of the barrier.
num_procs The number of threads or agents the barrier will block before continuing.

Description
This function is used to initialize Mobile-C Barrier variables for usage by the mc_Barrier () function.

Example
Please see the example located at the directory mobilec/demos/mc_barrier_example/ .

See Also
mc_Barrier(), mc_BarrierDelete().

284

mc_CallAgentFunc()

Synopsis
int mc_CallAgentFunc(MCAgent_t agent, const char* funcName, void* returnVal, ...);

Purpose
This function is used to call a function that is defined in an agent.

Return Value
This function returns O on success, or a non-zero error code on failure.

Parameters
agent The agent in which to call a function.
funcName The function to call.
returnVal (Output) The return value of the agent function.
A variable number of arguments

Description

This function enables a program to treat agents as libraries of functions. Thus, an agent may provide a
library of functions that may be called from binary space with this function, or from another agent by the
agent-space version of this function.

Example

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="127.0.0.1:5050">
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main ()
{
MCAgent_t agent;
int retval;
/* Search Return Variables =/
charxx agentNames;
charx* serviceNames;
int xagentIDs;
int numResults;
int a, b;

285

/% Search for addition service =*/
printf ("\n\n\nSearching for addition service.\n");
mc_SearchForService (
"addition",
&agentNames,
&serviceNames,
&agentIDs,
&numResults);
printf ("Done searching.\n");
if (numResults < 1) {
printf ("No agents with service ’'addition’ found.\n");
exit (0);

/% Just get the first hit =*/
printf ("Using agent %s for addition.\n", agentNames[0]);
agent = mc_FindAgentByID (agentIDs[0]);

a = 44;

b = 45;

mc_CallAgentFunc (agent, "addition", &retval, a, b);

printf ("Result of addition %d + %d is %d.\n", a, b, retval);

/+ Now search for multiplication service x/
printf ("\n\n Searching for Multiplication service...\n");
mc_SearchForService (

"multiplication",

&agentNames,

&serviceNames,

&agentIDs,

&numResults);

if (numResults < 1) {
printf ("No agents with service '‘multiplication’ found.\n");
exit (0);

printf ("Using agent %s for multiplication.\n", agentNames[O0]);
agent = mc_FindAgentByID (agentIDs[0]);

mc_CallAgentFunc (agent, "multiplication", &retwval, a, b);

printf ("Result of multiplication %d % %d is %d.\n", a, b, retval);

/* Now lets try to deregister a service */
mc_DeregisterService (

agentIDs[0],

serviceNames [0]

)
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also

286

MC_CallAgentFunc()

287

mc_ComposeAgent()

Synopsis

#include <libmc.h>

mcAgent_t mc_ComposeAgent(const char® name, const char* home, const char* owner, const char*
code, const char* return_var_name, const char* server, int persistent);

Purpose
This function is used to compose an agent from source code.

Return Value
The function returns a valid agent on success and NULL otherwise.

Parameters
name The name to assign to the new agent.
home The home of the new agent.
owner The owner of the new agent.
code The agent C/C++ code.
return_var_name (optional) The name of the agent’s return variable.
server The name of the destination server to send the agent.
persistent Whether or not the created agent should be persistent.
Description
This function is used to create an agent C/C++ source code.
Example

#include <stdio.h>
#include <string.h>
#include <libmc.h>

MCAgent_t makeAgent (int local_port, charx filename, char* agentName)
{

MCAgent_t agent;

char code[20000]={0};

char address[100];

FILE* fptr;

fptr = fopen(filename,"xr");
fread(code, 1, 20000, fptr);
fclose (fptr);

sprintf (address, "monkey.engr.ucdavis.edu:%d", local_port);

agent = MC_ComposeAgent (agentName, address,
"monkey.engr.ucdavis.edu", code, NULL, address, 0);
return agent;

int main(int argc, charxx argv) ({
MCAgency_t agency;
MCAgent_t agent;
MCAgencyOptions_t options;

288

int local_port = 5050;

if (argc == 2) local_port = atoi(argv[l]);

MC_InitializeAgencyOptions (&options);

MC_SetThreadOff (&options, MC_THREAD_CP); /* Turn off command prompt =/
agency = MC_Initialize(local_port, &options);

printf ("\n---- FIPA COMM TEST ----\n\n");

agent = makeAgent (local_port, "listener.c", "listener");
MC_AddAgent (agency, agent);

if (MC_MainLoop (agency) != 0) {

MC_End (agency) ;
return -1;

return 0;

}
See Also

mc_ComposeAgentS (), mc_ComposeAgentFromFile ()

289

mc_ComposeAgentS()

Synopsis

#include <libmc.h>

mcAgent_t mc_ComposeAgentS(const char® name, const char* home, const char* owner, const char*
code, const char* return_var_name, const char* server, int persistent, const char* workgroup_code

)

Purpose
This function is used to compose an agent from source code.

Return Value
The function returns a valid agent on success and NULL otherwise.

Parameters
name The name to assign to the new agent.
home The home of the new agent.
owner The owner of the new agent.
code The agent C/C++ code.
return_var_name (optional) The name of the agent’s return variable.
server The name of the destination server to send the agent.
persistent Whether or not the created agent should be persistent.

workgroup_code (optional) The workgroup code of the agent. Only agents with matching work-
group codes are allowed to interact with each other.

Description

This function is used to create an agent C/C++ source code.
Example

#include <stdio.h>
#include <string.h>
#include <libmc.h>

MCAgent_t makeAgent (int local_port, charx filename, charx agentName)
{

MCAgent_t agent;

char code[20000]={0};

char address[100];

FILE* fptr;

fptr = fopen(filename,"xr");

fread(code, 1, 20000, fptr);

fclose (fptr);

sprintf (address, "monkey.engr.ucdavis.edu:%d", local_port);
agent = MC_ComposeAgent (agentName, address,

"monkey.engr.ucdavis.edu", code, NULL, address, 0);
return agent;

290

int main(int argc, charx* argv) {
MCAgency_t agency;
MCAgent_t agent;
MCAgencyOptions_t options;
int local_port = 5050;

if (argc == 2) local_port = atoi(argv[l]);

MC_InitializeAgencyOptions (&options);

MC_SetThreadOff (&options, MC_THREAD_CP); /% Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);

printf ("\n---- FIPA COMM TEST ----\n\n");

agent = makeAgent (local_port, "listener.c", "listener");
MC_AddAgent (agency, agent);

if (MC_MainLoop (agency) != 0) {
MC_End (agency) ;
return -1;

return 0;

See Also
mc_ComposeAgent (), mc_ComposeAgentFromFile ()

291

mc_ComposeAgentFromFile()

Synopsis

#include <libmc.h>

mcAgent_t mc_ComposeAgent(const char® name, const char* home, const char* owner, const char*
filename, const char* return_var_name, const char* server, int persistent);

Purpose
This function is used to compose an agent from a source code file.

Return Value
The function returns a valid agent on success and NULL otherwise.

Parameters
name The name to assign to the new agent.
home The home of the new agent.
owner The owner of the new agent.
filename The file name containing agent C/C++ code.
return_var_name (optional) The name of the agent’s return variable.
server The name of the destination server to send the agent.
persistent Whether or not the created agent should be persistent.
Description
This function is used to create an agent C/C++ source code.
Example

#include <stdio.h>
#include <string.h>
#include <libmc.h>

int main(int argc, charxx argv) ({
MCAgency_t agency;
MCAgent_t agent;
MCAgencyOptions_t options;
int local_port = 8866;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&§options, MC_THREAD_CP); /x Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);

printf ("\n-—-—- FIPA COMM TEST —----\n\n");

printf ("Loading listener agent\n");
agent = MC_ComposeAgentFromFile (
"listen",
"127.0.0.1:8866",
"localhost",
"agents/listener.c",
NULL,
"127.0.0.1:8866",
0);
MC_AddAgent (agency, agent);

292

#fifndef _WIN32
sleep(1l);
#else
Sleep (1000);
#endif

printf ("\nLoading talker agent\n");
agent = MC_ComposeAgentFromFile (
"talk",
"127.0.0.1:8866",
"localhost",
"agents/talker.c",
NULL,
"127.0.0.1:8866",
0);
MC_AddAgent (agency, agent);

if (MC_MainLoop (agency) != 0) {

MC_End (agency) ;
return -1;

return 0;

}
See Also

mc_ComposeAgentFromFileS (), mc_ComposeAgent ()

293

mc_ComposeAgentFromFileS()

Synopsis

#include <libmc.h>

mcAgent_t mc_ComposeAgentFromFileS(const char* name, const char* home, const char* owner,
const char* filename, const char* return_var_name, const char* server, int persistent, const char*
workgroup_code);

Purpose
This function is used to compose an agent from a source code file.

Return Value
The function returns a valid agent on success and NULL otherwise.

Parameters
name The name to assign to the new agent.
home The home of the new agent.
owner The owner of the new agent.
filename The file name containing agent C/C++ code.
return_var_name (optional) The name of the agent’s return variable.
server The name of the destination server to send the agent.

workgroup_code (optional) The workgroup code of the agent. Only agents with matching work-
group codes are allowed to interact with each other.

Description

This function is used to create an agent C/C++ source code.
Example

#include <stdio.h>
#include <string.h>
#include <libmc.h>

int main(int argc, charxx argv) {
MCAgency_t agency;
MCAgent_t agent;
MCAgencyOptions_t options;
int local_port = 8866;

MC_InitializeAgencyOptions (&options);
MC_SetThreadOff (&options, MC_THREAD_CP); /% Turn off command prompt =*/
agency = MC_Initialize(local_port, &options);

printf ("\n-—--- FIPA COMM TEST ----\n\n");

printf ("Loading listener agent\n");
agent = MC_ComposeAgentFromFile (
"listen",
"127.0.0.1:8866",
"localhost",
"agents/listener.c",
NULL,

294

"127.0.0.1:8866",
0);
MC_AddAgent (agency, agent);

#ifndef _WIN32
sleep(1l);
#else
Sleep (1000);
#endif

printf ("\nLoading talker agent\n");
agent = MC_ComposeAgentFromFile (
"talk",
"127.0.0.1:8866",
"localhost",
"agents/talker.c",
NULL,
"127.0.0.1:8866",
0);
MC_AddAgent (agency, agent);

if (MC_MainLoop (agency) != 0) {

MC_End (agency) ;
return -1;

return 0;

}
See Also

mc_ComposeAgentFromFile (), mc_ComposeAgent ()

295

mc_CondBroadcast()

Synopsis
int mc_CondBroadcast(int id);

Purpose
Signal all mobile agents and threads which are waiting on a condition variable.

Return Value
This function returns O if the condition variable is successfully found and signalled. It returns non-zero if
the condition variable was not found.

Parameters
id The id of the condition variable to signal.

Description

This function is used to signal all other mobile agents and threads that are waiting on a Mobile-C condition
variable. The function that calls mc_CondBroadcast() must know beforehand the id of the condition vari-
able which a mobile agent might be waiting on.

Example
Please see Program and Program in Chapter|[T1]
See Also

mc_CondDelete(), mc_Condlnit(), mc_CondSignal().

296

mc_CondReset()

Synopsis
int mc_CondReset(int id);

Purpose
Reset a Mobile-C Condition variable for re-use.

Return Value
This function returns 0 upon success or non-zero if the condition variable was not found.

Parameters
id The id of the condition variable to signal.

Description
This function resets a used condition variable, setting it’s state back to an unsignalled state. A Mobile-C
condition variable will remain in a signalled state indefinitely until this function is called.

Example
See Program 26 on page 60|and Program in Chapter

See Also
mc_CondDelete(), mc_Condlnit(), mc_CondSignal(), mc_CondWait().

297

mc_CondSignal()

Synopsis
int mc_CondSignal(int id);

Purpose
Signal another mobile agent which is waiting on a condition variable.

Return Value
This function returns O if the condition variable is successfully found and signalled. It returns non-zero if
the condition variable was not found.

Parameters
id The id of the condition variable to signal.

Description

This function is used to signal another mobile agent or thread that is waiting on a Mobile-C condition vari-
able. The function that calls mc_CondSignal() must know beforehand the id of the condition variable an
agent may be waiting on. Note that although a MobileC synchronization variable may act as a mutex, con-
dition variable, or semaphore, once it is used as a condition variable, it should only be used as a condition
variable for the remainder of it’s life cycle.

Example
See Program and Program in Chapter|[I1]
See Also

mc_CondDelete(), mc_Condlnit(), mc_CondSignal().

298

mc_CondWait()

Synopsis
int mc_CondWait(int id);

Purpose
Cause the calling mobile agent or thread to wait on a Mobile-C condition variable with the id specified by
the argument.

Return Value
This function returns 0 upon successful wakeup or non-zero if the condition variable was not found.

Parameters
id The id of the condition variable to signal.

Description

This function blocks until the condition variable on which it is waiting is signalled. If an invalid id is
specified, the function returns 1 and does not block. The function is designed to enable synchronization
possibilities between threads and mobile agents without using poll-waiting loops. Note that although a Mo-
bileC synchronization variable may act as a mutex, condition variable, or semaphore, once it is used as a
condition variable, it should only be used as a condition variable for the remainder of it’s life cycle.

Example

See Program [26 on page 60|and Program [27 on page 61|in Chapter

See Also
mc_CondDelete(), mc_Condlnit(), mc_CondSignal().

299

mc_DeleteAgent()

Synopsis
int mc_DeleteAgent(const char* agent_name);

Purpose
Delete a mobile agent from an agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agent_name The name of an initialized mobile agent.

Description
This function halts and marks an agent for removal from an agency. This function completely eliminates the
agent, even if the agent has remaining unfinished tasks.

Example

See Also
MC_AddAgent()

300

mc_DeregisterService()

Synopsis
#include <libmc.h>
int mc_DeregisterService(int agentID, char* serviceName);

Purpose
Deregisters an agent service from an agency Directory Facilitator.

Return Value
The function returns O on success and non-zero otherwise.

Parameters
agentl D An agent id.
serviceName The service name to deregister.

Description

This function is used to deregister a service associated with an agent from an agency. The function searches
for a service matching the provided service name and agent id and deregisters it from the Directory Facili-
tator.

Example

<?xml version="1.0"?2>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>agent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost :5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051" persistent="1" >
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>

int main ()

{

int 1i;
charxx services;
services = (charxx)malloc (sizeof (char*) =* 2);
for (i = 0; 1 < 2; i++) {
services[i] = (charx)malloc(sizeof (char)*30);

}
strcpy (services[0], "agentl_service");
strcpy (services[1l], "agentl_bonus_service");

301

mc_RegisterService (

mc_current_agent,
services,
2

)i
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also

MC_DeregisterService(), mc_RegisterService().

302

mc_End()

Synopsis
#include <libmc.h>
int mc_End(void);

Purpose
Terminate a Mobile-C agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters None.

Description
This function stops all the running threads in an agency and deallocates all the memories regarding an
agency.

Example

See Also
MC_End().

303

mc_FindAgentByID()

Synopsis
MCAgent_t MC_FindAgentByID(int id);

Purpose
Find a mobile agent by its ID number in a given agency.

Return Value
The function returns an MCAgent_t object on success or NULL on failure.

Parameters
id An integer representing a mobile agent’s ID number.

Description
This function is used to find and retrieve a pointer to an existing running mobile agent in an agency by the
mobile agent’s ID number.

Example

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5051</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="127.0.0.1:5050">
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main ()
{
MCAgent_t agent;
int retval;
/% Search Return Variables x/
charxx agentNames;
charx* serviceNames;
int xagentIDs;
int numResults;
int a, b;

/* Search for addition service x/
printf ("\n\n\nSearching for addition service.\n");
mc_SearchForService (

"addition",

&agentNames,

304

&serviceNames,
&agentIDs,
&numResults);
printf ("Done searching.\n");
1if (numResults < 1) {
printf ("No agents with service ’addition’ found.\n");
exit (0);

/% Just get the first hit «*/
printf ("Using agent %s for addition.\n", agentNames[0]);
agent = mc_FindAgentByID (agentIDs[0]);

a = 44;

b = 45;

mc_CallAgentFunc (agent, "addition", &retval, a, Db);

printf ("Result of addition %d + %d is %d.\n", a, b, retval);

/+ Now search for multiplication service x/
printf ("\n\n Searching for Multiplication service...\n");
mc_SearchForService (

"multiplication",

&agentNames,

&serviceNames,

&agentIDs,

&numResults);

if (numResults < 1) {
printf ("No agents with service 'multiplication’ found.\n");
exit (0);

printf ("Using agent %s for multiplication.\n", agentNames[0]);
agent = mc_FindAgentByID (agentIDs[0]);

mc_CallAgentFunc (agent, "multiplication", &retval, a, b);

printf ("Result of multiplication %d * %d is %d.\n", a, b, retval);

/+ Now lets try to deregister a service =/
mc_DeregisterService (

agentIDs[0],

serviceNames [0]

)
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also

305

mc_FindAgentByName()

Synopsis
MCAgent_t mc_FindAgentByName(const char *name);

Purpose
Find a mobile agent by its name in an agency.

Return Value
The function returns an MCAgent_t object on success or NULL on failure.

Parameters
name A character string containing the mobile agent’s name.

Description
This function is used to find and retrieve a pointer to an existing running mobile agent in an agency by the
mobile agent’s given name.

Example

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 3</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
<DATA dim="0" name="no-return" >
</DATA>
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main ()
{
MCAgent_t tmp;
tmp = mc_FindAgentByName ("mobagentl") ;
printf ("Agent mobagentl is at address %x\n", tmp);
if (tmp == NULL) {
printf ("Agent not found. Terminating...\n");
return 0;
}
mc_TerminateAgent (tmp) ;
return 0;

11>
</AGENT_CODE>

306

</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also

307

mc_GetAgentID()

Synopsis
#include <libmc.h>
int mc_GetAgentID(mcAgent_t agent);

Purpose
Get an agent’s ID.

Return Value
This function returns an agent’s ID.

Parameters
agent An initialized mobile agent.

Description
Every agent that arrives at an agency is given an agency-unique identification number. This function re-
trieves that number.

Example

<?xml version="1.0"7?>

<!DOCTYPE myMessage SYSTEM "mobilec.dtd">
<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>service_provider_2</NAME>
<OWNER>IEL</OWNER>
<HOME>10.0.0.11:5050</HOME>
<TASK task="1" num="0">
<DATA persistent="1"
number_of_elements="0"
name="no-return"
complete="0"
server="10.0.0.15:5050">
</DATA>
<AGENT_CODE>
<! [CDATA[
#define BR_IRGAIN 10
#define fwSpeed 50

int Connections_A[9] = {5, 1, 2, 5, -15, -6, -2, 2, 7};
int Connections_BI[9] = {2, -2, -6, -15, 5, 2, 1, 5, 7};

struct Robot {
int tabsens[9];
int left_speed;
int right_speed;
bi

int RobotBehaviour (struct Robot xsystem) {

308

long int lspeedl6, rspeedlb;

int 1i;
lspeedl6 = 0;
rspeedl6 = 0;

for (i=0; 1i<9; i++) {

lspeedl6 -= Connections_B[i] % system->tabsens[i];
rspeedl6 -= Connections_A[i] x system->tabsens[i];
}
system->left_speed = ((lspeedl6 / BR_IRGAIN) + fwSpeed);
system->right_speed = ((rspeedl6 / BR_IRGAIN) + fwSpeed);

if (system.left_speed > 0 && system.left_speed < 30)
system.left_speed = 30;

if (system.left_speed < 0 && system.left_speed > -30)
system.left_speed = -30;

if (system.right_speed > 0 && system.right_speed < 30)
system.right_speed = 30;

if (system.right_speed < 0 && system.right_speed > -30)

system.right_speed = -30;

if (system.left_speed > 60 || system.left_speed < -60)
system.left_speed = 0;

if (system.right_speed > 60 || system.right_speed < -60)

system.right_speed = 0;

return 0;

int main(int arc, char =xargv([]) {
char **service;
int num = 1, i, agent_id, mutex_id = 55;

MCAgent_t agent;

service = (char x*)malloc (sizeof (char =*)*num);
for (1i=0; i<num; i++) {

service[i] = (char *)malloc(sizeof (char) *20);
}

strcpy (service[0], "RobotBehaviour");

agent = mc_FindAgentByName ("service_provider_1");
agent_id = mc_GetAgentID (agent);

mc_MutexLock (mutex_id) ;

mc_DeregisterService (agent_id, service[0]);
mc_RegisterService (mc_current_agent, service, num);
mc_MutexUnlock (mutex_id) ;

printf ("Service provider 2 has arrived.\n");
printf ("Services provided:\n");
for (1i=0; i<num; i++) {

printf ("$s\n", service[i]);

for (i=0; i<num; 1i++) {
free (servicel[i]);
}

free (service);

309

return 0;

11>
</AGENT_CODE>
</TASK>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_GetAgentName().

310

mc_GetAgentName()

Synopsis
#include <libme.h>
int mc_GetAgentName(MCAgent_t agent);

Purpose
Get an agent’s name.

Return Value
This function returns an agent’s name.

Parameters
agent An initialized mobile agent.

Description
This function returns an agent’s name. All agents have a self defined descriptive name that may not be
unique. This function gets the name of an agent.

Example

See Also
mc_GetAgentID().

311

mc_GetAgentNumTasks()

Synopsis
#include <libmc.h>
int mc_GetAgentNumTasks(MCAgent_t agent);

Purpose
Return the total number of tasks a mobile agent has.

Return Value
This function returns a non negative integer on success and a negative integer on failure.

Parameters
agent A MobileC agent.

Description
This function returns the total number of tasks that an agent has. It counts all tasks: those that have been
completed, those that are in progress, and those that have not yet started.

Example

See Also
MC_GetAgentNumTasks().

312

mc_GetAgentStatus()

Synopsis
#include <mobilec.h>
int mc_GetAgentStatus(MCAgent_t agent);

Purpose
Get the status of a mobile agent in an agency.

Return Value
This function returns an enumerated value representing the current status of a mobile agent. See Table

Parameters
agent The mobile agent from which to retrieve status information.

Description
This function gets a mobile agent’s status. The status is used to determine the mobile agent’s current state
of execution.

Example

This function is identical to the binary space version, MC_GetAgentStatus(). Please see the documentation
for MC_GetAgentStatus on page for an example.

See Also

313

mc_GetAgentXMLString()

Synopsis
char *mc_GetAgentXMLString(MCAgent_t agent);

Purpose
Retrieve a mobile agent message in XML format as a character string.

Return Value
The function returns an allocated character array on success and NULL on failure.

Parameters
agent The mobile agent from which to retrieve the XML formatted message.

Description
This function retrieves a mobile agent message in XML format as a character string. The return pointer is
allocated by *malloc()’ and must be freed by the user.

Example

This function has identical behaviour with the its binary-space counterpart, MC_GetAgentXMLString().
Please see the documentation for MC_GetAgentXMLString() on page|189

See Also

314

mc_HaltAgency()

Synopsis
#include <libmc.h>
int mc_HaltAgency(void);

Purpose
This function halts the execution of an agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters None.

Description

This function halts the primary threads of an agency, such as the ACC, AMS, message handlers, etc. If any
thread is busy with a particular task, it will halt as soon as the task is finished. Note that this function does not
halt the execution of any agents which may be performing tasks. Agents performing tasks may not rely on
the primary Mobile-C threads, such as the ACC, AMS, etc., and thus may not halt upon calling this function.

Example

See Also
mc_ResumeAgency().

315

mc_MigrateAgent()

Synopsis
int mc_MigrateAgent(MCAgent_t agent, const char* hostname, int port);

Purpose
Instructs an agent to migrate to another host.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agent An initialized mobile agent. Typically, when invoked from agent space, this argument will be
“mc_current_agent”, which is the agent’s pointer to itself.
hostname The new host to migrate to.
port The port on the new host to migrate to.

Description
This function instructs an agent to migrate to a new host. The task of the agent is not incremented. The agent
will executed whatever task it was currently on when this function was invoked on the new host. Note that
this function only prepends a task to the agents task list. The agent still needs to finish before the migration
step occurs.

Example

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" return="no-return" complete="0" server="localhost:5051" />
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
#include <math.h>
int main ()
{
charx str;
printf ("Hello World!\n");
printf ("This is mobagentl from the agency at port 5050.\n");
printf ("I am performing the task on the agency at port 5051 now.\n");
printf ("$£f\n", hypot(1,2));

if (mc_host_port == 5050) {
mc_MigrateAgent (mc_current_agent, "localhost", 5051);
} else if (mc_host_port == 5051) {

316

mc_MigrateAgent (mc_current_agent, "localhost", 5050);

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_MigrateAgent()

317

mc_MutexLock()

Synopsis
int mc¢_MutexLock(int id);

Purpose
This function locks a previously initialized Mobile-C synchronization variable as a mutex. If the mutex is
already locked, the function blocks until it is unlocked before locking the mutex and continuing.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters
id The id of the synchronization variable to lock.

Description
This function locks the mutex part of a Mobile-C synchronization variable. While this is primarily used to
guard a shared resource, the behaviour is similar to the standard POSIX mutex locking. Note that although a
Mobile-C synchronization variable may assume the role of a mutex, condition variable, or semaphore, once
a Mobile-C synchronization variable is used as a mutex, it should not be used as anything else for the rest of
its life cycle.

Example
Please see Program [24 on page 58| Program 25 on page 59 and Chapter [TT]on page[56|for more details.

See Also
mc_MutexUnlock(), mc_SyncInit(), mc_SyncDelete().

318

mc_MutexUnlock()

Synopsis
int mc¢_MutexUnlock(int id);

Purpose
This function unlocks a locked Mobile-C synchronization variable.

Return Value
This function returns O on success, or non-zero if the id could not be found.

Parameters
id The id of the synchronization variable to lock.

Description

This function unlocks a Mobile-C synchronization variable that was previously locked as a mutex. If the
mutex is not locked while calling this function, undefined behaviour results. Note that although a Mobile-C
may act as a mutex, condition variable, or semaphore, once it has been locked and/or unlocked as a mutex,
it should only be used as a mutex for the remainder of it’s life cycle or unexpected behaviour may result.

Example
Please see Program [24 on page 58| Program 25 on page 59| and Chapter [TT]on page[56|for more details.

See Also
mc_MutexLock(), mc_Synclnit(), mc_SyncDelete().

319

mc_PrintAgentCode()

Synopsis
int mc_PrintAgentCode(MCAgent_t agent);

Purpose
Print a mobile agent code for inspection.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agent The mobile agent from which to print the code.

Description
This function prints the mobile agent code to the standard output.

Example

See Also

320

mc_RegisterService()

Synopsis

#include <libmc.h>

int mc_RegisterService((MCAgent_t agent, int agentID, const char agentName, char** serviceNames,
int numServices);

Purpose
Registers an agent service with an agency Directory Facilitator.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
agent (Optional) An initialized mobile agent.
agentl D (Optional) An agent id.

agentName (Optional) An agent name.
serviceNames A list of descriptive names for agent services.
numServices The number of services listed in the previous argument.

Description

This function is used to register agent services with an agency. Among the optional arguments, either a valid
agent must be supplied, or both an agent ID and an agent name. Thus, services may be registered to an agent
which has not yet arrived at an agency by specifying the ID and name of the agent.

Example

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>agent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051" persistent="1" >
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>

int main ()

{

int 1i;
charx* services;
services = (charxx)malloc (sizeof (charx*) % 2);
for (i = 0; 1 < 2; 1i++) {
services[i] = (charx)malloc(sizeof (char) *30);

321

}

strcpy (services[0], "agentl_service");
strcpy (services[1l], "agentl_bonus_service");

mc_RegisterService (
mc_current_agent,
services,
2
)

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
MC_RegisterService(), mc_DeregisterService().

322

mc_ResumeAgency()
Synopsis
#include <libmc.h>

int mc_ResumeAgency(void);

Purpose
This function resumes the execution of an agency.

Return Value
The function returns O on success and non-zero otherwise.

Parameters None.

Description

This function resumes the operation of the core threads of the Mobile-C agency, such as the ACC, AMS,
etc., after they have been halted by the mc_HaltAgency () function.

Example

See Also
mc_HaltAgency().

323

mc_RetrieveAgent()

Synopsis
MCAgent_t mc_RetrieveAgent(void);

Purpose
Retrieve the first neutral mobile agent from a mobile agent list.

Return Value
The function returns an MCAgent_t object on success or NULL on failure.

Parameters
void This function does not take any parameters.

Description
This function retrieves the first agent with status MC_AGENT_NEUTRAL from a mobile agent list. If there
are no mobile agents with this attribute, the return value is NULL.

Example

See Also

324

mc_RetrieveAgentCode()

Synopsis
char *mc_RetrieveAgentCode(MCAgent_t agent);

Purpose
Retrieve a mobile agent code in the form of a character string.

Return Value
The function returns an allocated character array on success and NULL on failure.

Parameters
agent The mobile agent from which to retrieve the code.

Description
This function retrieves a mobile agent code. The return pointer is allocated by malloc()’ and must be freed
by the user.

Example
Please see the example under MC RetrieveAgentCode() on page [215]

See Also

325

mc_SearchForService()

Synopsis

#include <libmc.h>

int mc_SearchForService(char* SearchString, char*** agentNames, char*** serviceNames, int **
agentIDs,int* numResults);

Purpose
Searches the Directory Facilitator for a service.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters

searchString (in) A search substring. All services names registered with the Directory Facilitator with a
matching substring will be a hit.

agentNames (out) A newly allocated array of agent names of agents that provide services matching the
search string.

serviceNames (out) A newly allocated array of service names matching the search substring.

AgentlDs (out) A newly allocated array of agent IDs of matching agents.

numServices (out) The number of services listed in the previous argument.

Description
This function is used to search the Directory Facilitator for a service. The function will return all services if
any part of the service name matches the search string.

Example

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>agent 3</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051" persistent="1" >
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>

int main ()

{
int i;
char xxagentNames;
char x*serviceNames;

326

int xagentIDs;
int numResults;

mc_SearchForService (
"bonus",
&agentNames,
&serviceNames,
&agentIDs,
&numResults
)i
for (i = 0; 1 < numResults; i++) {
printf ("$s:%d %s\n",
agentNames[i],
agentIDs[i],
serviceNames[i]

)i

printf ("\n");
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_RegisterService(), mc_DeregisterService().

327

mc_SemaphorePost()

Synopsis
int mc_SemaphorePost(int id);

Purpose
This function unlocks one resource from a Mobile-C semaphore, increasing its count by one.

Return Value
This function returns 0 on success, or non-zero if the id could not be found or on a semaphore error.

Parameters
id The id of the synchronization variable to lock.

Description

mc_SemaphorePost unlocks a resource from a previously allocated and initialized Mobile-C synchroniza-
tion variable being used as a semaphore. This function may be called multiple times to increase the count
of the semaphore up to INT_MAX. Note that although a Mobile-C synchronization variable may be used
as a mutex, condition variable, or semaphore, once it is used as a semaphore, it should only be used as a
semaphore for the remainder of its life cycle.

Example

The MC_SemaphorePost() function usage is very similar to the other binary space synchronization func-
tions. Please see Chapter [I1] on page [56] and the demo at “demos/agent_semaphore_example/” for more
information.

See Also
mc_SemaphoreWait(), mc_Synclnit(), mc_SyncDelete().

328

mc_SemaphoreWait()

Synopsis
#include <libmc.h>
int mc_SemaphoreWait(int :d);

Purpose

This function allocates one resource from a MobileC synchronization semaphore variable.
Return Value

This function returns O on success, or non-zero if the id could not be found.

Parameters
id The id of the synchronization variable to lock.

Description

This function allocates one resource from a previously allocated and initialized MobileC synchronization
semaphore. If the semaphore resource count is non-zero, the resource is immediately allocated. If the
semaphore resource count is zero, the function blocks until a resource is freed before allocating a resource
and continuing.

Note that although a MobileC synchronization variable may be used as a mutex, condition variable, or
semaphore, once it is used as a semaphore, it should only be used as a semaphore for the remainder of its
life cycle.

Example

The MC_SemaphorePost() function usage is very similar to the other binary space synchronization func-
tions. Please see Chapter [IT] on page [S6] and the demo at “demos/agent_semaphore_example/” for more
information.

See Also
mc_SemaphorePost(), mc_Synclnit(), mc_SyncDelete().

329

mc_SendAgentMigrationMessage()

Synopsis
int mc_SendAgentMigrationMessage(char *message, char *hostname, int port);

Purpose
Send an ACL mobile agent message to a remote agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
message The ACL mobile agent message to be sent.
hostname The hostname of the remote agency. It can be in number-dot format or hostname format,
1.e., 169.237.104.199 or machine.ucdavis.edu.
port The port number on which the remote agency is listening.
Description

This function is used to send an XML based ACL mobile agent message, which is a string, to a remote
agency.

Example

See Also

330

mc_SendAgentMigrationMessageFile()

Synopsis
int mc_SendAgentMigrationMessageFile(const char * filename, const char *hostname, int port);

Purpose
Send an ACL mobile agent message saved as a file to a remote agency.

Return Value
The function returns 0 on success and non-zero otherwise.

Parameters
filename The ACL mobile agent message file to be sent.
hostname The hostname of the remote agency. It can be in number-dot format or hostname format,
1.e., 169.237.104.199 or machine.ucdavis.edu.
port The port number on which the remote agency is listening.
Description

This function is used to send an XML based ACL mobile agent message, which is saved as a file, to a remote
agency.

Example

Please see the example for MC_SendAgentMigrationMessageFile() on page [225]
See Also

331

mc_SendSteerCommand()

Synopsis
#include <libmc.h>
int mc_SendSteerCommand(MCAgency _t attr, int(*)(void* data) funcptr, void* arg);

Purpose

The mc_SendSteerCommand function sends a computational steering command to the algorithm at the
agent’s current agency.

Return Value

The function returns 0 on success, or a non-zero error code on failure.

Description
This function enables mobile agents to send steer commands to steering-enables algorithms running at the
agent’s local agency. See the demo at demos/steer_example/ for more details.

Example

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>resume_agent</NAME>
<OWNER>TEL</OWNER>
<HOME>localhost:5051</HOME>
<TASKS task="1" num="0">
<TASK num="0"
complete="0"
server="localhost:5050">
<DATA name="no-return" >
</DATA>
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main() {
printf ("Resuming Agent...");
mc_SendSteerCommand (MC_RUN) ;
return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also

332

MC _Steer(), MC_SteerControl()

333

mc_SetAgentStatus()

Synopsis
int mc_SetAgentStatus(MCAgent_t agent, int status);

Purpose
Set the status of a mobile agent in an agency.

Return Value
This function returns 0 on success and non-zero otherwise.
Parameters
agent The mobile agent whose status is to be assigned.
status An integer representing the status to be assinged to a mobile agent.

Description
This function returns an integer of enumerated type enum MC_AgentStatus_e. Details about this enumer-

ated type may be found in Table[B.2]on page

Example
Please see the example for MC_SetAgentStatus() on page 229

See Also

334

mc_SetDefaultAgentStatus()

Synopsis
int mc_SetDefaultAgentStatus(int status);

Purpose
Set the default status of any incoming mobile agents.

Return Value
This function returns O on success and non-zero otherwise.
Parameters
status An integer representing the status to be assinged to any incoming mobile agents as their default
status.

Description

This function sets the default status of any incoming mobile agents by one of the enumerated values of type
enum mc_AgentStatus_e. See Table|B.2 on page 247|for a complete listing of the enumerated type.
Example

Please see the example for MC_SetDefaultAgentStatus() on page

See Also

335

mc_SyncDelete()

Synopsis
int mc_SyncDelete(int id);

Purpose
Delete a previously initialized synchronization variable.

Return Value
This function returns O on success and nonzero otherwise.

Parameters
id The id of the condition variable to delete.

Description
This function is used to delete and deallocate a previously initialized Mobile-C synchronization variable.

Example
Please see the example for MC_SyncDelete() on page [238

See Also
mc_Synclnit().

336

mc_Synclnit()

Synopsis
int mc_SynclInit(int id);

Purpose
Initialize a new synchronization variable for agents to wait on.

Return Value
This function returns the allocated id of the synchronization variable. Note that the allocated id may not
necessarily be the same as the requested id. See the description below for more details.

Parameters
id A requested synchronization variable id. A random id will be assigned if the value passed is 0
or if there is a conflicting id.

Description

This function initializes and registers a new MobileC synchronization variable. Mobile-C Synchronization
variables may be used as a mutex, a condition variable (with an associated mutex), or a semaphore. The
purpose of the Mobile-C synchronization variables is to synchronize the execution of agents with each other,
as well as the excution of agents with their respective agencies.

Each synchronization variable created by this function is effectively global across the agency and there-
fore must have a unique identifying number. If this function is called requesting an id that is already reg-
istered, the function will automatically ignore the requested value and allocate a synchronization variable
with a randomly generated id.

Example

<?xml version="1.0"?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>sleep_agent</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main ()
{
int mutex_id;
printf ("Sleep agent has arrived.\n");
mutex_id = mc_SyncInit (55);
if (mutex_id != 55) {

337

printf ("Possible error. Aborting...\n");

exit (1);
}
printf ("This is agent 1.\n");
printf ("Agent 1: I am locking the mutex now.\n");
mc_MutexLock (mutex_id) ;
printf ("Agent 1: Mutex locked. Perform protected operations here\n");
printf ("Agent 1: Waiting for 5 seconds...\n");
sleep(5);
printf ("Agent 1: Unlocking mutex now...\n");
mc_MutexUnlock (mutex_id) ;

return 0;

11>
</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also
mc_CondSignal(), mc_CondWait(), mc_MutexLock(), mc_MutexUnlock(), mc_SemaphorePost(), mc_SemaphoreWait(),
mc_SyncDelete().

338

mc_TerminateAgent()

Synopsis
int mc_TerminateAgent(const char* agent_name);

Purpose
Terminate the execution of a mobile agent in an agency.

Return Value
The function returns 0 on success and an error code on failure.

Parameters
agent_name The name of a valid mobile agent.

Description

This function halts a running mobile agent. The Ch interpreter is left intact. The mobile agent may still
reside in the agency in MC_AGENT_NEUTRAL mode if the mobile agent is tagged as ’persistent’, or is
terminated and flushed otherwise.

Example

<?xml version="1.0"?2>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent 3</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" complete="0" server="localhost:5051">
<DATA dim="0" name="no-return" >
</DATA>
</TASK>
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
int main ()
{
MCAgent_t tmp;
tmp = mc_FindAgentByName ("mobagentl");
printf ("Agent mobagentl is at address %x\n", tmp);
if (tmp == NULL) {
printf ("Agent not found. Terminating...\n");
return 0;
}
mc_TerminateAgent (tmp) ;
return 0;

11>

339

</AGENT_CODE>
</TASKS>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

See Also

340

Appendix C

Mobile-C Agent Porting Guide from v1.9.x
to v1.10.x

This chapter provides a brief overview of changes made to the agent xml code from version 1.9 to version
1.10. Agents in the v1.10 series of Mobile-C will not be compatible with the v1.9 series of agencies and
vice versa. Additional features such as saved agent variables have necessitated a reorganization of the agent
XML format.

C.1 Overview of major changes

Some major changes in the agent xml format from version 1.9 to version 1.10 include the following:
1. The <GAF_MESSAGE> tag has been renamed to <MOBILEC_MESSAGE>.

2. The <TASK> tag has been renamed to <TASKS>. The attributes within the old <TASK> tag, task
and num, remain the same.

3. The <DATA> tag has been renamed to <TASK>. Within the new <TASK> tag, the name attribute,
which specifies the name of the variable to return upon task completion, has been renamed to ret urn.

C.1.1 Comparison of Old Format and New Format
Old Agent Code

<!DOCTYPE myMessage SYSTEM "gafmessage.dtd">

<GAF_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost :5050</HOME>
<TASK task="1" num="0">
<DATA dim="0" name="no-return" complete="0" server="localhost:5051" />
<AGENT_CODE>
<! [CDATA[

341

#include <stdio.h>

#include <math.h>

int main ()

{
printf ("This is mobagentl from the agency at port 5050.\n");
printf ("I am performing the task on the agency at port 5051 now.\n");
printf ("$£f\n", hypot(1,2));

return O;

11>
</AGENT_CODE>
</TASK>
</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</GAF_MESSAGE>

New Agent Code

<?xml version="1.0"7?>
<!DOCTYPE myMessage SYSTEM "mobilec.dtd">

<MOBILEC_MESSAGE>
<MESSAGE message="MOBILE_AGENT">
<MOBILE_AGENT>
<AGENT_DATA>
<NAME>mobagent1</NAME>
<OWNER>IEL</OWNER>
<HOME>localhost:5050</HOME>
<TASKS task="1" num="0">
<TASK num="0" return="no-return" complete="0" server="localhost:5051" />
<AGENT_CODE>
<! [CDATA[
#include <stdio.h>
#include <math.h>
int main ()
{
printf ("This is mobagentl from the agency at port 5050.\n");
printf ("I am performing the task on the agency at port 5051 now.\n");
printf ("$f\n", hypot(1,2));

return 0;
11>

</AGENT_CODE>
</TASKS>

342

</AGENT_DATA>
</MOBILE_AGENT>
</MESSAGE>
</MOBILEC_MESSAGE>

C.2 New Agent XML DTD

<!ELEMENT MOBILEC_MESSAGE (MESSAGE)>

<!ELEMENT MESSAGE (MOBILE_AGENT |ENCRYPTED_DATA|ENCRYPTION_DATA) >

<!ATTLIST MESSAGE

message (MOBILE_AGENT |RETURN_MSG|ENCRYPTED_DATA|ENCRYPTION_INITIALIZE)

<!ELEMENT MOBILE_AGENT (AGENT_DATA) >

<!ELEMENT AGENT_DATA (NAME,OWNER, HOME, SENDER, WG_CODE, TASKS) >

<!ELEMENT NAME (#PCDATA)>
<!ELEMENT OWNER (#PCDATA) >
<!ELEMENT HOME (#PCDATA) >
<!ELEMENT SENDER (#PCDATA) >
<!ELEMENT WG_CODE (#PCDATA) >

<!ELEMENT TASKS (TASK+, AGENT_CODE+) >
<!ATTLIST TASKS

task CDATA #REQUIRED

num CDATA #REQUIRED >

<!ELEMENT TASK (DATAx,FILE~*)>
<!ATTLIST TASK
num ID #REQUIRED
return CDATA #IMPLIED
server CDATA #REQUIRED
code_id CDATA #IMPLIED
persistent CDATA #IMPLIED>

<!ELEMENT DATA (ROW«*)>
<!ATTLIST DATA
name CDATA #REQUIRED
dim CDATA #REQUIRED
type (char|short|int|float|double) #REQUIRED>

<!ELEMENT ROW (ROW«*, #PCDATA)>
<!ATTLIST ROW
index CDATA #REQUIRED>

<!ELEMENT FILE (#PCDATA) >
<!ATTLIST FILE
name CDATA #REQUIRED>

<!ELEMENT AGENT_CODE (#PCDATA)>

<!ATTLIST AGENT_CODE
id ID #IMPLIED >

343

#REQUIRED>

Index

Ch_CallFuncByName(), 44

FIPA_ACCEPT_PROPOSAL,
FIPA_AGREE,
FIPA_CALL_FOR_PROPOSAL,
FIPA_CANCEL,
FIPA_CONFIRM,

FIPA _DISCONFIRM,

FIPA _FAILURE,
FIPA_INFORM,
FIPA_INFORM_IF,
FIPA_INFORM _REEF,
FIPA_NOT_UNDERSTOOD,
fipa_performative_e, 80|
FIPA_PROPOGATE,
FIPA_PROPOSE,

FIPA_PROTOCOL_BROKERING,
FIPA_PROTOCOL_CONTRACT_NET,
FIPA_PROTOCOL_DUTCH_AUCTION,

FIPA_PROTOCOL_END,

FIPA_PROTOCOL_ENGLISH_AUCTION,

MC_AclAddReplyTo(),
mc_AclAddReplyTo(), 254
MC_AclGetContent(), [89]
MC_AclGetConversationID(),
MC_AclGetPerformative(),[92]
MC_AclGetProtocol(), 84} 93]
MC_AclGetSender(), [96]

MC_AcINew(), 08} [0}

mc_AcINew(), 256} [258] [259] 271]
MC_AclPost(),

mc_AclRetrieve(), 260]
mc_AclSend(),
MC_AclSetContent(), [104]
mc_AclSetContent(), [264]
MC_AclSetConversationID(),
MC_AclSetPerformative(),
mc_AclSetPerformative(),
MC_AclSetProtocol(),[T10]

MC _AclSetSender(),
mc_AclSetSender(), [269]

MC _AclWaitRetrieve(),

FIPA_PROTOCOL ITERATED_CONTRACT NET.BQ/C_AddAgent(), [[3]

FIPA_PROTOCOL_PROPOSE,
FIPA_PROTOCOL_QUERY,

FIPA_PROTOCOL_RECRUITING,

FIPA_PROTOCOL_REQUEST,

FIPA_PROTOCOL_REQUEST_WHEN,
FIPA_PROTOCOL_SUBSCRIBE,

FIPA_PROXY,
FIPA_QUERY_IF,

FIPA_QUERY _REF,
FIPA_REFUSE,
FIPA_REJECT_PROPOSAL,
FIPA_REQUEST,
FIPA_REQUEST_WHEN,
FIPA_REQUEST_WHENEVER,
FIPA_SUBSCRIBE,

MC_AclAddReceiver(),
mc_AclAddReceiver(), 250} 252]

mc_AddAgent(),
MC_AddAgentInitCallback(), [I35]

MC_AddStationaryAgent(),
MC_AGENT_ACTIVE,
mc_agent_id,

mc_agent_name,
MC_AGENT_NEUTRAL,

MC_AGENT_SUSPENDED,
MC_AgentAddTask(), [TT5]
MC_AgentAddTaskFromFile(),
MC_AgentAttachFile(), [I19]
mc_AgentAttachFile(),
MC_AgentExecEngine(), @3]
MC_AgentListFiles(), [121]
mc_AgentListFiles(),
MC_AgentProcessingBegin(), [122]
MC_AgentProcessingEnd(),
MC_AgentRetrieveFile(), [124]

344

mc_AgentRetrieveFile(), 277]
MC_AgentReturnArrayDim(), [123]
MC_AgentReturnArrayExtent(), [127]
MC_AgentReturnArrayNum(), [128]
MC_AgentReturnDataGetSymbolAddr(), [129]
MC_AgentReturnDataSize(), [130]
MC_AgentReturnDataType(),[I31]
MC_AgentReturnIsArray(), [132]

MC _AgentStatus_e,
MC_AgentType_e, [T9]
mc_AgentVariableRetrieve(),
mc_AgentVariableSave(), 280]
MC_ALL _SIGNALS,[79

MC _Barrier(),[139]

mc_Barrier(), 282

MC _BarrierDelete(), [140]
mc_BarrierDelete(), 283

MC _BarrierInit(), [T4T]
mc_BarrierInit(), 284
MC_CallAgentFunc(), 3] [142]
mc_CallAgentFunc(), @8] 283
MC_CallAgentFuncV(), [144]
MC_CallAgentFuncVar(), 46|
MC_ChlnitializeOptions(), @
MC_ComposeAgent(), [[50]
mc_ComposeAgent(), 28]
MC_ComposeAgentFromFile(), [156]
mc_ComposeAgentFromFile(), 292
MC_ComposeAgentFromFileS(),[T58]
mc_ComposeAgentFromFileS(),[294]

MC_ComposeAgentFromFileWithWorkgroup(), [I60]

MC_ComposeAgentS(), [152]
mc_ComposeAgentS(), 290]
MC_ComposeAgentWithWorkgroup(), [[54]
MC_CondBroadcast(), [162]
mc_CondBroadcast(), 296]
MC_CondReset(),[T163]
mc_CondReset(),
MC_CondSignal(),[T64]
mc_CondSignal(), 298|
MC_CondWait(), [T63]
mc_CondWait(), 299
MC_CopyAgent(), [166]

mc_current_agent, 52} 53]

MC _DeleteAgent(), [168]
mc_DeleteAgent(), [300]

MC _DeregisterService(), [L69]
mc_DeregisterService(), BT_Tfl

MC_End(), [T71]

mc_End(), 303
MC _EXEC_AGENT,[79]

MC _FindAgentByID(), m

mc_FindAgentByID(), 48] [304]
MC_FindAgentByName(), {3} [T74]

mc_FindAgentByName(), [#7] 306]
MC_GetAgentArrival Time(),[T76]

MC_GetAgentExecEngine(), 42}
MC_GetAgentID(),[T79]
mc_GetAgentID(), [308]
MC_GetAgentName(), [I82]
mc_GetAgentName(), 311]
MC_GetAgentNumTasks(), [I83]
mc_GetAgentNumTasks(), 312
MC_GetAgentReturnData(), [184]
MC_GetAgents(), [197]
MC_GetAgentStatus(), [I86]
mc_GetAgentStatus(), [313]
MC_GetAgentType(), [I8F]
MC_GetAgentXMLString(), 89
mc_GetAgentXMLString(), [314]
MC_GetAllAgents(), [193]
MC_HaltAgency(),[194]
mc_HaltAgency(), 313
mc_host_name, 25} 247
mc_host_port,

MC _Initialize(), D} [[93]

MC _InitializeAgencyOptions(), 199
MC _LoadAgentFromFile(), 201]
MC_LOCAL _AGENT,

MC _MainLoop(), [9} [202]

MC _MigrateAgent(), 203]
mc_MigrateAgent(), 316]
MC_MutexLock(), 204]
mc_MutexLock(), 3T§]
MC_MutexUnlock(), 203]
mc_MutexUnlock(),[319
mc_num_tasks, 247]

MC _PrintAgentCode(), [206]
mc_PrintAgentCode(), [320]
MC_QUEUE_AGENT,
MC_QUEUE_BARRIER, @
MC_QUEUE_CONNECTION,
MC_QUEUE_MESSAGE, @
MC_QUEUE_SYNC, Im
MC_QueueRDLock(), 207
MC_QueueRDUnlock(), [207]

345

MC_QueueWRLock(),[207]
MC_QueueWRUnlock(), [207]
MC_RECV_AGENT,[79
MC_RECV_CONNECTION,[79]
MC_RECV_MESSAGE,
MC_RECV_RETURN, [79]
MC_RegisterService(), 209
mc_RegisterService(), @8] [321]
MC_REMOTE_AGENT,

MC _ResetSignal(), 2TT]
MC_RESTART,
MC_ResumeAgency(), 213]
mc_ResumeAgency(), 323

MC _RetrieveAgent(), 214
mc_RetrieveAgent(),[324]

MC _RetrieveAgentCode(), 215]
mc_RetrieveAgentCode(), [323]
MC_RETURN_AGENT,
MC_RUN, 247
MC_SearchForService(),
mc_SearchForService(), 48] [326]
MC_SemaphorePost(), 219
mc_SemaphorePost(), [328]
MC_SemaphoreWait(), 220]
mc_SemaphoreWait(), [329]
MC_SendAgent(), 221]
MC_SendAgentFile(), 222]
MC_SendAgentMigrationMessage(), 224]
mc_SendAgentMigrationMessage(), [330]
MC_SendAgentMigrationMessageFile(), 223
mc_SendAgentMigrationMessageFile(), [331]
MC_SendSteerCommand(), 227]
mc_SendSteerCommand(), [332]
MC_SetAgentStatus(), 229]
mc_SetAgentStatus(), [334]
MC_SetDefaultAgentStatus(), 231]
mc_SetDefaultAgentStatus(), [333]
MC_SetThreadOff(), 232]
MC_SetThreadOn(), 233
MC_Steer(),[234]
MC_SteerControl(), 236
MC._STOP,

MC_SUSPEND, P47]
MC_SyncDelete(), 23|
mc_SyncDelete(), [336]

MC_SyncInit(), 56, 239
mc_Synclnit(), 56, 337]
mc_task_progress, @ @

MC _TerminateAgent(), 240]
mc_TerminateAgent(), #7] 339
MC_THREAD_AL[79]
MC_THREAD_ALL,[79
MC_THREAD_AM,
MC_THREAD_CL, IE
MC_THREAD_CP,
MC_THREAD_MR, @
MC_THREAD_MS,
MC_WAIT_CH, [T9
MC_WAIT_FINISHED,
MC_WAIT_MESSGSEND, [79]
MC_WaitAgent(), 241]
MC_WaitRetrieveAgent(), 242
MC_WaitSignal(), [244]
MCAgencyOptions_t,[9]
MCAgent_t, [247]

persistent, [43|

346

	Introduction
	Mobile-C Library Installation
	Requirements
	Installation on Unix
	Install the Mobile-C library

	Installation on Windows
	Building the Mobile-C Library

	Installation on KoreBot
	Build the Mobile-C library

	Installation on Gumstix
	Build the Mobile-C library

	Installing the Mobile-C Ch Package
	Creating your own compilation environment
	UNIX and Mac systems
	Windows

	Getting Started
	Compilation on Unix
	Compilation on Windows
	Overview of Sample Application Programs
	Mobile-C Bluetooth Agencies (Experimental)
	Execution of Sample Applications
	The Mobile-C Library
	Architecture of the Mobile-C Library
	Implementation of the Mobile-C Library

	Composing Agents
	Mobile-C Command Prompt compose_send Command
	Example Execution Using the compose_send Command

	Mobile-C MC_ComposeAgent* Functions
	Agent Workgroups

	Agent Data
	Agent Return Data
	Agent Saved Variables

	Mobile-C Agent Migration Message Format
	General Message Format
	Multiple Tasks with a Single Code Block
	Multiple Tasks with Multiple Code Blocks
	Multiple Mobile Agent performs Task on Multiple Hosts
	Agent Return Messages
	Agent Saved Variables
	Stationary/Persistent Mobile Agents
	An Agent with an Infinite Task
	The ``persistent'' Agent Flag

	Mobile-C FIPA Compliant ACL Messages
	Constructing and Sending an ACL Message
	Receiving an ACL Message

	Mobile-C Binary Stationary Agents
	Interface between Binary and Mobile Agent Spaces
	Using an Agent Initialization Callback Function to Intergrate Binary and Script Space Code
	Invoke a Mobile Agent Space Function from Binary Space

	Extend Mobile-C Functionality to Mobile Agent Space
	Terminate Mobile Agent Execution from Mobile Agent Space
	Invoke a Registered Service from Mobile Agent Space

	Synchronization Support in the Mobile-C library
	Synchronization in Mobile Agent Space
	Synchronization Between Binary and Agent Spaces
	Mobile-C Execution with Multiple Agencies

	Mobile-C Security Module
	Security Module Architecture and Overview
	Enabling the Security Module
	Enabling the Security Module in Unix
	Enabling the Security Module in Windows
	Further Instructions

	Preparation to Run Security Enabled Agency
	Generating Key Files
	Known Host File

	Examples – Mobile-C Security

	Communication With Other FIPA Compliant Agent Systems
	Example: Receiving a message from a JADE agent
	Example: Sending a message from Mobile-C to JADE

	Mobile-C API in the C/C++ Binary Space
	MC_AclGetProtocol()
	MC_AclAddReceiver()
	MC_AclAddReplyTo()
	MC_AclGetContent()
	MC_AclGetConversationID()
	MC_AclGetPerformative()
	MC_AclGetProtocol()
	MC_AclGetSender()
	MC_AclNew()
	MC_AclPost()
	MC_AclReply()
	MC_AclRetrieve()
	MC_AclSetContent()
	MC_AclSetConversationID()
	MC_AclSetPerformative()
	MC_AclSetProtocol()
	MC_AclSetSender()
	MC_AclWaitRetrieve()
	MC_AgentAddTask()
	MC_AgentAddTaskFromFile()
	MC_AgentAttachFile()
	MC_AgentListFiles()
	MC_AgentProcessingBegin()
	MC_AgentRetrieveFile()
	MC_AgentReturnArrayDim()
	MC_AgentReturnArrayExtent()
	MC_AgentReturnArrayNum()
	MC_AgentReturnDataGetSymbolAddr()
	MC_AgentReturnDataSize()
	MC_AgentReturnDataType()
	MC_AgentReturnIsArray()
	MC_AddAgent()
	MC_AddAgentInitCallback()
	MC_AddStationaryAgent()
	MC_Barrier()
	MC_BarrierDelete()
	MC_BarrierInit()
	MC_CallAgentFunc()
	MC_CallAgentFuncV()
	MC_CallAgentFuncVar()
	MC_ChInitializeOptions()
	MC_ComposeAgent()
	MC_ComposeAgentS()
	MC_ComposeAgentWithWorkgroup()
	MC_ComposeAgentFromFile()
	MC_ComposeAgentFromFileS()
	MC_ComposeAgentFromFileWithWorkgroup()
	MC_CondBroadcast()
	MC_CondReset()
	MC_CondSignal()
	MC_CondWait()
	MC_CopyAgent()
	MC_DeleteAgent()
	MC_DeregisterService()
	MC_End()
	MC_FindAgentByID()
	MC_FindAgentByName()
	MC_GetAgentArrivalTime()
	MC_GetAgentExecEngine()
	MC_GetAgentID()
	MC_GetAgentName()
	MC_GetAgentNumTasks()
	MC_GetAgentReturnData()
	MC_GetAgentStatus()
	MC_GetAgentType()
	MC_GetAgentXMLString()
	MC_GetAgents()
	MC_GetAllAgents()
	MC_HaltAgency()
	MC_Initialize()
	MC_InitializeAgencyOptions()
	MC_LoadAgentFromFile()
	MC_MainLoop()
	MC_MigrateAgent()
	MC_MutexLock()
	MC_MutexUnlock()
	MC_PrintAgentCode()
	MC_QueueXXLock()
	MC_RegisterService()
	MC_ResetSignal()
	MC_ResumeAgency()
	MC_RetrieveAgent()
	MC_RetrieveAgentCode()
	MC_SearchForService()
	MC_SemaphorePost()
	MC_SemaphoreWait()
	MC_SendAgent()
	MC_SendAgentFile()
	MC_SendAgentMigrationMessage()
	MC_SendAgentMigrationMessageFile()
	MC_SendSteerCommand()
	MC_SetAgentStatus()
	MC_SetDefaultAgentStatus()
	MC_SetThreadOff()
	MC_SetThreadOn()
	MC_Steer()
	MC_SteerControl()
	MC_SyncDelete()
	MC_SyncInit()
	MC_TerminateAgent()
	MC_WaitAgent()
	MC_WaitRetrieveAgent()
	MC_WaitSignal()

	Mobile-C API in the C/C++ Script Space
	mc_AclAddReceiver()
	mc_AclAddReceiver()
	mc_AclAddReplyTo()
	mc_AclNew()
	mc_AclPost()
	mc_AclReply()
	mc_AclRetrieve()
	mc_AclSend()
	mc_AclSetContent()
	mc_AclSetPerformative()
	mc_AclSetSender()
	mc_AclWaitRetrieve()
	mc_AddAgent()
	mc_AgentAttachFile()
	mc_AgentListFiles()
	mc_AgentRetrieveFile()
	mc_AgentVariableRetrieve()
	mc_AgentVariableSave()
	mc_Barrier()
	mc_BarrierDelete()
	mc_BarrierInit()
	mc_CallAgentFunc()
	mc_ComposeAgent()
	mc_ComposeAgentS()
	mc_ComposeAgentFromFile()
	mc_ComposeAgentFromFileS()
	mc_CondBroadcast()
	mc_CondReset()
	mc_CondSignal()
	mc_CondWait()
	mc_DeleteAgent()
	mc_DeregisterService()
	mc_End()
	mc_FindAgentByID()
	mc_FindAgentByName()
	mc_GetAgentID()
	mc_GetAgentName()
	mc_GetAgentNumTasks()
	mc_GetAgentStatus()
	mc_GetAgentXMLString()
	mc_HaltAgency()
	mc_MigrateAgent()
	mc_MutexLock()
	mc_MutexUnlock()
	mc_PrintAgentCode()
	mc_RegisterService()
	mc_ResumeAgency()
	mc_RetrieveAgent()
	mc_RetrieveAgentCode()
	mc_SearchForService()
	mc_SemaphorePost()
	mc_SemaphoreWait()
	mc_SendAgentMigrationMessage()
	mc_SendAgentMigrationMessageFile()
	mc_SendSteerCommand()
	mc_SetAgentStatus()
	mc_SetDefaultAgentStatus()
	mc_SyncDelete()
	mc_SyncInit()
	mc_TerminateAgent()

	Mobile-C Agent Porting Guide from v1.9.x to v1.10.x
	Overview of major changes
	Comparison of Old Format and New Format

	New Agent XML DTD

	Index

